LEARNING
PHP

Free unaffiliated eBook created from
Stack Overflow contributors.

Table of Contents

A OUL . . 1
Chapter 1: Getting started with PHP ... 2
RIS . .. 2
Y] £ P 3
P H P 7 X 3

P H P B X, 3
PH P X . 3
LBgACY VOIS ONS . . i 4
= 10] 0] [T 4
HTML OUtpUL from W SeIVer . .. et 4
NON-HTML OUtpUL from WD SEIVET e e 5
Hello, WWOrIa . ettt et e e e 6
INSEIUCHION SEPAIAtION. ettt e e e e e e e e e e e e 6
PHP CLl. ottt 7

LI o o = 44T P 7
U DU . 8
DU . 9
PHP DU QB VT . 9
EXAMPIE USAQC 9
CON I gUI At ON . .. 9
OGS . .. 10
PH P T A0S . . oo e 10
StaANAArd TagSo 10
ECNO A0S . . . 10
S T o N 1= o 10
AP T A S . .. 11
Chapter 2: Alternative Syntax for Control Structures............................. 12
) 1= G U 12

EX Al . .. 12

Alternative for STALEMENT. 12
Alternative While Statement. 12
Alternative foreach statement.o 12
Alternative SWItCh STatEMENT. ettt e 13
Alternative If/else StatemMENt. 13
APt 3. AP CU 15
1o 0 T 1o o 15

E XM S . ..o 15
Simple storage and retrieVal.o 15
StOre INFOIMALION ot e e e e e 15
[TErating OVEr ENTIES. . ..ottt e ettt e 15
Chapter 4: Array teration........ ... 17
1= U 17
RIS . 17
Comparison of methods toiterate anarray............................ . 17
EX APl . .. 17
Iterating multiple arrays tOgether. o 17
Using an inCremental INAEX. i e e e e e e e e 18
UsiNg internal @rray POINTEIS.ttt et ettt e e e e e e e 19
USING @aCN 19
USINg ML, . 20
USING fOrEACKN. 20
DIFO Ot 00D 20
OO WItN KBY S . .. 20
LOOp by reference. ... 20
L000] o [o] ¥ ¢ 7=1 1 [0y Y 20N PP 21
USiNg ArrayObjeCt HEIatOr. e e e e ettt et e e 22
AP O B AT S 23
oo T 1o o 23

P Al A O S . . o 23

RIS . . 23
S AlIS0 23
o= 10] 0] (2 T 23
INLANIZING BN AITAY . . .ottt e e e e e e e e 23
CRECK I KBY BXISTS . ..ottt e et e e e e e 26
Checking if a value eXIStS IN @ITaAYttt e e e e e e e e e 27
Validating the array By P, ... e e et 28
ArrayAccess and lterator INterfaCes.o 28
Creating an array Of Variables. o e 32
Chapter 6: Asynchronous programmingoooiiiiti e 33
B S . ..o 33
AdVANTageS Of GENEIALOIS. ettt ettt e e e e e e e e 33
USING ICICIE BVENT I00D . .. e e e e e e e e 33
USING AMP BVENE IO0Pottt ettt e e e e e e e e 34
Spawning non-blocking processes With proc_opPen().oouiiiii it 34
Reading serial port with Event and DIO o 36
BLICZES] 1 T 38
HTTP Client Based on EVENt EXIENSION.t et e 38

R P-CliENt DD . .. 38
[0S o] o o JEP 40
L0 LT= o [P 40
HTTP Client Based 0N EV EXIENSION.o 41

R P-Cli et DD . .. 41
B 1 T T 45
Chapter 7: Autoloading Primer.o 47
)Y 1= G U 47
REMIAIKS . .. 47
= 10 4] 0] (= a7
Inline class definition, No loading reqUIred. e e 47
Manual class loading With reqUITE.o o e e e 47

Autoloading replaces manual class definition loading..............oo 48

Autoloading as part of a framework SOIULION. i e 48

Autoloading With COMPOSETottt e ettt e e e e 49
Chapter 8: BC Math (Binary Calculator)............ ... 51
I OdUCTION. . e 51
1= U 51

P A A B S . 51
RIS . . 53
G 1 11] o [TP 53
Comparison between BCMath and float arithmetic operations.................. e, 53
becadd vs float+Hfloat. 53
besub vs float-float.o 53
MUl VS I Nt 53
bemul vs float float. ... 53
bedivivs float/float. 54
Using bcmath to read/write a binary long on 32-bit system............. 54
Chapter 9: Cache. 56
REMIAIKS . . 56
NS Al At 0N . .. 56
o= 10] 0] (2 56
Caching USINg MEMCACKE. e e e 56
SHOrE daAtA.o 57
7= o - | - PP 57
Delete data. 57
Small scenario fOr CaChINg. e 57
Cache UsiNg APC CaChe. e e e e e 58
Chapter 10: Classes and ODbjJects. ... 59
I OdUCTION. . e 59
1= I U 59
RIS . . 59
Classes and Interface COMPONENTS 59

E XIS . .o 60

11 1= 7= Vo <A 60

It oAU ON. 60
RealiZatioN. 60
1 1= 4= o = 61
EX ML 61
Class CONSIANTS. e 63
define VS Class CONSIANES 65
Using ::class to retrieve Class's Name........ ... 66
Late static DINAING. ... 66
ADSIIACT ClaSSES. . .. 67
IMportant NOtE 69
Namespacing and AUtoloading. i 69
DYNaMIC BiNAINg. ... oo 71
Method and Property Visibility. 72
PUDIIC. .. 72
o 0] =T o (=T o PP 72
PV A .. 73
Calling a parent constructor when instantiating achild.............................. 74
FINal KEY WO, o 75
$this, self and static plus the SINgletoN. ... 76
TRE SNl ON 78
AULOIOAING . . .ttt e 79
ANONYMOUS ClaSSES . . .ttt ettt e e e ettt e et e e e e e e e e 81
DefiNiNg @ BaSIC Class. ..ottt e e 82
CONS U GO e 82
Extending Another Class. 82
Chapter 11: ClOSUN. ... 84
= 11] 0] (= T 84
BasiC USAQe Of @ ClOSUIE.ot e e e 84
Using external variables. 85

BasiC ClOSUIe DINAINGo e e et 85

Closure binding and SCOPE.ottt et 86

Binding a closure for 0ne Call. 87
Use closures to implement ObServer pattern. o 88
Chapter 12: Coding CONVENLIONS i 90
o= 0] 0] (1 J 90

P H P T A0S . . ot e 90
Chapter 13: Command Line Interface (CLI)................ 91
E XM S . .o 91
Argument Handling. 91
Input and OUtpUL HaNAIING.o et e e e e 92
REIUIN COUBS. . . ot e 93
Handling Program OPtioNS.ttt e ettt e 93
Restrict script execution to command liNE. i 94
RUNNING YOUE SO I . .. ettt e e e e e e e e e e e e e e 95
Behavioural differences on the command line. 95
RUNNING BUIt-IN WED SEIVET e e e e e 96
Edge Cases Of getOPt(). . ..o .ottt 96
Chapter 14: COMMENES e 98
RIS . . 98
G 1 11] o [TP 98
SINGIE LiNE COMM NS . ..ottt e e e e e e e e e e e 98
MUItE LINE COMMENTS. ...ttt ettt e et e et et e e e e e e 98
Chapter 15: COMMON EITOIS.o 99
= 1] 0] (1 99
UNeXpeCted BeNa. ... e 99

Call fetch_assoc 0N D0O0IEAN. e e 99
Chapter 16: Compilation of Errors and Warnings...................oooiii 101
E XM S . ..o 101
Notice: Undefined iNAEX. e 101
Warning: Cannot modify header information - headers already sent......... i, 101
Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM. ...t 101

Chapter 17: Compile PHP EXtENSIONS 103

EX Al . .. 103

ComMPIlING ON LINUX. .ottt e e e e e e e e e 103
StEPS 10 COMPIlE 103
Loading the Extension in PHP 103
Chapter 18: Composer Dependency Manager..................oiiiiiiiiii 105

o0 T 1o o 105
)11 105
P A A B S . o 105
REMIAIKS . . 105
HelpTUL LINKS . .. 105
FEW SUQOESHIONS . .. o 105
= 1] 0] (= 106

LT o R S @] 1] o101 =T 106

Autoloading With COMPOSETt e et e e e 106

Benefits Of USING COMPOSETttt ettt e e e e e e e e 107

Difference between ‘composer install' and ‘composer update'. ...t 108

COMIPOSEN UPUALEttt ettt e e et 108
COMIPOSEr INSTAll. ... 108
When to install and when to update. ... oo 109

Composer Available CommMaNds.t e e e 109

INSTAIIATION. 110
LOCaUlY o 110
Globally 111
Chapter 19: CoNStaANTS. 112

) 1= ¥ G 112
REMIAIKS . . 112
= 10] 0] [T 112

Checking if constant is defined.o e e 112
SIMpPle CheCK. ... 112
Getting all defined CONStANES........ ... o 113

DEfiNING CONSIANTS. ... o 113

Define constant using explicit values......... ... 114

Define constant using another constant...................... 114
Reserved CONSIANTSo 114
Conditional defines. 114
CONSt VS AefiNe. 115
ClaSS CONSIANTS.t 115
CONS AN A AY S ettt ettt et e e 116
Class CONStANt EXAMDIE o 116
Plain constant example. ... 116
USING CONSEANTSottt et e e e ettt et e e e e e e e e e e e e e 116
Chapter 20: Contributingtothe PHP Core.........., 118
REMIAIKS . . 118
Contributing With BUQ FIXES. 118
Contributing with Feature AdditioNS. ... 118
RIS 119
V2T 650 11 To TP 119
= 1] 0] [J 119
Setting up a basic development enVIrONMENt. e 119
Chapter 21: Contributingtothe PHP Manual......................... . 121
o0 T 1o o 121
REMIAIKS . . 121

E XM S . . oo 121
Improve the official documentation. 121
Tips for contributing to the manual. 121
Chapter 22: Control StrUCIUreS 123
E XM S . .o 123
Alternative syntax for CONrol SITUCIUIES e 123
WL . 123
oWl . 123

0 0o 124

=Y £ < 124

(1ol 10T [T =T (U] = 125
FOGUITE ... 125
NCIUD . .. 125

=0 126
O 127
L0 (== o] o P 127
I IS IS, . 127
F 128
o] 128
Chapter 23: COOKIES 130
I OTUCTION. ... e 130
)Y 1= ¥ G 130
P A M IS 130
REMIAIKS . . 130
E XM S . ..o 131

SEttNG @ COOKIE. . ..ottt e 131

Retrieving @ COOKIE. 131

MOAIFYING @ COOKIE. . . .ottt ettt e e e e e e e e 132

ChecKing if @ COo0KIE IS SeL. e e e e e e e e 132

RemMOVING @ COOKIE. o e e 132
Chapter 24: Create PDF files in PHP ... 134

E XM S . .o 134

Getting Started With PDFIID. 134

Chapter 25: Cryptographyo 135
REMIAIKS . . 135
= 1] 0] [T 135

SYMIMELIC CIPN T . . e e e e e 135
BN O Y Pl ON . .. 135
DI=Te oY/ o 11T] o DS 135

Base64 ENCOAe & DECOUR. e 136

Symmetric Encryption and Decryption of large Files with OpenSSL..................iiii .. 136

ENCIY Pt RIS, 136
DOy Pt FIlS. .. o 137
HOW 10 US . .. 138
Chapter 26: Datetime Class.......... ... 139
= 1] 0] [J 139

[0 =2 T TS 7= 0 o 139

SO DA 139
Add or Subtract Date INTErValS. 139
Create DateTime from CUuStOm fOrmMat. o e 140
PrINtING DAt TS . ..ottt et e e e 140

O AL . .. 140
L0 57 T [141
Procedural. 141
ObJECE-OENIEA. e e 141
Procedural EQUIVAIENT. 141
Create Immutable version of DateTime from Mutable prior PHP 5.6.......... i, 141
Chapter 27: DebUGQING 142
[T 11] o [T U 142
DUMPING VaNaDIES e e e e e 142
DISPIAYING BITOTS . ..ottt e e e e 142
PRPINTO() . . .o 143
AN . 143
INtrOTUCHION. 143
EX APl .. 144
XABUG . o o 144
1] 6 3VZ= £ T 144
I OdUCTION. . e 145
= 10 1]] 145
Error Reporting (Use them both)o 145

Chapter 28: Dependency Injection....................... . 146

I OUCTI ON . ..o e e 146

EX APl . .. 146
(O70] o151 11 Tox (o) g 9] [=Tox 1 o] o AN 146
St O MOt ON . .. 147
(07e] a1 r= 11 U= g 1] = Tox 1 o] o A 148

Chapter 29: Design Patterns. i 150

[T OTUCTION. 150

= 1] 0] [J 150
Method Chaining N PH P e e e e e e e e 150

When 10 USeo 151
Additional NOES 151

Command QUEIY SEPAIALION. 151

LT T 151

Law of Demeter and impact ON teStINg 151

Chapter 30: Docker deployment. 153

I OTUCTION. e e 153

REMIAIKS . . 153

= 10] 0] [J 153
Get dOCKer IMagE fOr PR . .. e e e 153
WIHING AOCKEITIlE. . ..ottt e e e e e 153

ONOMING flES. ..o 154
BUIIIING MG . . . oo 154
Starting application CONTAINET et e e e e e e 154

CheCKiNg CONLAINET. e 154

APPICALION OGS, ... 154

Chapter 31: Exception Handling and Error Reporting...................ooooiiiiiiiiiii . 155

= 1] 0] [T 155
Setting error reporting and where to display them. 155
Exception and Error handling. o 155

L0771 (o] 1 TR 155

Catching different EXCeplioN By PeS. oo 156

L0217 156

oW AN . . . 157
LOgOINg fatal EITOIS. .. oot 157
Chapter 32: Executing UpON @n AITQY 159
= 10] 0] [159
Applying a function to each element of an array..........co.oiii it e 159
Splitarray INt0 CHUNKS e e e e e 160
Imploding an array iNt0 StNG. e et 161
AITAY _TEAUCE. . . . ettt et et et e e e e e e e 161
"Destructuring” arrays USING HST(). eu e 163
PUSH @ ValUB ON AN ATTAYottt e e e ettt e e e e e e 163
Chapter33: File handling.................. 165
1= 165

P A A B S . o 165
RIS . 165
Filename SYNtaX. 165
= 10] 0] [166
Deleting files and dir@CIOMIES e et e 166
Deleting flleS. ... o 166
Deleting directories, with recursive deletion........... ... 166
CoNVENIEBNCE TUNCHIONS. e e et 167
RaAW direCt 1O . . 167
SV O . 167
Reading afile to stdout directly 168
Orfrom afile POINIEr. ... 168
Reading afileinto @an array.......... ... 168
Getting file INfOrMatioN. 169
Checkifapathisadirectoryorafile................. 169
ChecKing fille type. ... 169
Checking readability and writability 170

Checking file access/modify time......... ... 170

Get path parts with fileinfo. ... 170

Minimize memory usage when dealing with largefiles...................... 171
Stream-based fille 1O 172
OPeNING @ SIr@AM 172
ReAdING 173
ReEAING NS . o 173
Reading everything remaining. o e 173
Adjusting file pointer PoSitioNn. 173
WG . 174
Moving and Copying files and direCtOries. 174
CopYING filES 174
Copying directories, With recursion........... ... 174
ReNaMING/MOVING 175
Chapter 34: Filters & Filter FUNCHONS.........., 176
I OdUCTION . . 176
)Y 1= ¥ G 176

P A A S . . o 176
= 1] 0] [J 176
Validate Email AQAresS oo e e 176
Validating A Value 1S AN I QT e e e e e 177
Validating An Integer Falls IN A RANGE.ttt e e e e 177
Validate @ UR L. ... o et e e 178
SANItIZE T OIS . e 180
Validating BooIean ValUeS.o e 180
Validating A NUMDbBEr IS A FlOat. o e e e e e e 181
Validate A MAC AQUArESS.ttt e et et et e e e e e e 182
SaNitze EMail AdOreSSeS. .o 182
SANITIZE MBI . . ettt e et 182
SANIIZE URLS. ..ot 183
SANITIZE FlO@ES . ..o 184

Validate IP AQAreSSES 185

Chapter 35: Functional Programming................ooo i 188

o0 T 1o o 188
= 10] 0] [J 188
AssiIgnmeNt 1o Variables. 188
UsiNg oUtSIde Variables. 188
Passing a callback function as a Parameter.ottt 189
ProcedUIral StYlE:. ... 189
ObjeCt OrieNted Sty .. 189
Object Oriented style using a static method: e 189
Using built-in functions as callbacks. 190
ANONYMOUS fUNCHION. e e e e e e e e e 190
150 o= 191
ClOS U . e 191
PUIE TUNCHIONS . . . e e e e 193
ODbJECES @S @ fUNCHON e e e e e e 193
Common functional methods in PHP 194

1Y F= o] o)1 [o RS 194
Reducing (Or folding)o 194
I OrINg . 194
Chapter 36: FUNCHONS. 195
) 1= GO 195
B S . ..o 195
BasiC FUNCHON USAQE. ittt et e e e e e 195
OPtIONAl Parameters.ottt et e 195
Passing Arguments by Reference. ... 196
Variable-length argument liStS. o 197
FUNCLION SCOPE. . ..t et e e e e e e e e e e e e 198
Chapter 37: GeNEIAtOrS 200
= 10] 0] [J 200
WHRY USE @ QENEIAIOI? . . .ottt ettt e ettt e e e e e e e e e 200
Re-writing randomNumbers() USING @ QBNEIALOT.ottt ettt e e 200

The Yield KEYWOId.o ettt e e e e e e e e e e e e 201

Yielding ValUes 202
Yielding Values With KeYS 202
Using the send()-function to pass values to a generator......... ... 202
Chapter 38: Headers Manipulation.......... ... 204
= 1] 0] [J 204
Basic Setting of @ Header. ... o 204
Chapter 39: Howto break down an URL................... 206
o0 T 1o o 206
= 1] 0] [J 206
USING ParSe UM (). ..o e e e e e e e 206
USING @XPIOAE() . . . o oot e 207
USING DaSENamIE). 208
Chapter 40: How to Detect Client IP ADAress. ... 209
= 1] 0] [209
Proper use of HTTP_X _FORWARDED _FOR. e 209
Chapter 41: HTTP Authentication.................... 211
I OTUCTION. e e 211
= 101 0] [T 211
SIMpPle QUINENTICALE. e e 211
Chapter 42: Image Processing with GD ... 212
REMIAIKS . .. 212
= 1] 0] [J 212
(O == 11 o = 1 1 1 4= o = 212
CoNVErtiNg AN IMAGE 212
MGG QUL DU, . ..ttt 212
Saving to afile. 213
Output as an HTTP F€SPONSE. ... 213
Writing into a variable. 213
Using OB (OUtput BUTfeIING) 213

USING St BaIM WA D S . ittt e 214

EXAMPIE USAQE. 214

Image Cropping and RESIZINGt e e e e e e e 215
Chapter 43: IMagiCK 218
EX AL . .. 218
S A 1= 1 218
Convert Image into DaseB4 StriNG.oo i e e 218
Chapter 44: IMAP 220
[1 11] o [TP 220
INSEAll IMAP EXIENSION.ottt e e e e e e e e 220
Connecting to @ MailDOX. e 220

List all folders in the MailboX. e e 222
Finding messages in the MailboX. e 222
Chapter 45: Installing a PHP environmenton Windows.......................oooiiiiiiiii 225
REMIAIKS . . 225
= 0] 0] 51 J 225
Download and Install XAMP P 225
WAt 1S XAM P P 2 . 225
Where should | download it from 2. ... 225
How to install and where should | place my PHP/htmlfiles?.. 225
Install with the provided INStaller. ... 225
INStall from the ZIP 226
POSt-INS Al ..o 226
File handling 226
Download, Install and use WAMP 227
Install PHP and use it With 1S o 228
Chapter 46: Installing on Linux/Unix Environments.........................iiii . 230
= 1] 0] [J 230
Command Line Install Using APT for PHP 7. . .o e 230
Installing in Enterprise Linux distributions (CentOS, Scientific Linux, tC).............coo i, 230
Chapter 47: JSON ... 232

I OTUCT ON . ..o e 232

P A A S . 232
REMIAIKS . . 232
EX AL . .. 233
Decoding @ JSON StiNG. . ..ottt ettt et e e e ettt e e e 233
ENCOAING @ JSON StINQottt ettt e e e e e e e e e e 236
ATGUIM NS . .. 236
JSON _FORCE _OBIE C T ..t 236
JSON_HEX_TAG, JSON_HEX_AMP, JSON_HEX_APOS, JSON_HEX QUOT.........evveireenen... 237
JSON_NUMERIC _CHE CK e 237
JSON PRETTY P RINT e 238
JSON _UNESCAPED _SLASHES 238
JSON_UNESCAPED _UNICODE. o e 238
JSON_PARTIAL_OUTPUT_ON_ERROR. ... e 238
JSON_PRESERVE_ZERO _FRACTION. ..o 239
JSON_UNESCAPED_LINE_TERMINATORS e 239
DebUGQING JSON BITOIS. . ..ottt et e e et et e e e e e e e e e e e e 239

JE1o] g = S =T € (o] 1 T T P 240
[0l g = S A= € (] 240
Using JsonSerializable in @an ObJeCt. o 241
Properties Values eXamPle. 242
Using Private and Protected Properties with json_encode()................. i 242

(O 111 o] ¥ 1 S U 243
Header json and the returNed reSPONSE.ttt e et 243
Chapter 48: Localization............. ... 244
)Y 1= ¥ G 244
= 1] 0] [J 244
Localizing Strings With getteXt(). 244
CNAPLEr 49 LOOPS i 246
o0 T 1o o 246

EX APl . .. 246
O 246

L0 =T o 247

0] =T | 248

0. NI . 249
CONTINUE. ..ttt et et e e e e e e e e e e 249
WL L 251
Chapter 50: Machine learning................... 252
RIS . 252
= 101110 5 252
Classification USING PHP-ML. o e e e e e e 252
SVC (Support Vector Classification)........................ 252
K-Nearest NeIgNbOrS 253
NaiveBayes Classifier. 253
PracCliCal CaSE. 254
RO O S ON . . e 254
SUPPOIt VECIOr REOIESSION e 254
LeastSquares Linear RegreSSION 255
PractiCal CaSE.o 255
(O 1151 1= 41 o O 256
KoM AN 256
DB S C AN .. 256
PractiCal Case. 257
Chapter 51: Magic COoNStaNtS 258
REMIAIKS . . 258
= 1] 0] [J 258
Difference between _ FUNCTION___and _ METHOD __ it 258
Difference between _ CLASS__, get_class() and get_called_class()..........oooveniiiiiiiiiiii i, 259

File & DIreCtory CONStaNTS. ottt ettt ettt e e e e e 259

CUITENE Il . . . 259

CUITENE AIFEC O Y 260

S A O S 260
Chapter 52: Magic Methods. 261
E XAl S . . . 261
_get(), __set(), __isset() and _ UNSEL().oouiriit e 261
empty() function and magic MethodS. ... 262
_construct() and _ deStrUCH().oo e 262
1 111 1 o 263

U INVOKE) . oottt e e e 263
_call) @nd _ CAllSTAtIC)) oot 264

E XM 265
_sleep() and _ WaAKEUP() . ..ottt 265

L AebUGINTO() . .o 266

{03 0] 0T 267
Chapter 53: Manipulating an ArTay 268
= 10] 0] [J 268
Removing elements from @n @rrayoou oot e e e e 268
Removing terminal elements. 268
I EriNg AN AITAY 269
Filtering non-empty ValUueso 269
Filtering by callback 269
Filtering DY INAeX. ... 270
Indexes infiltered array 270
Adding element to start Of @rraY 271
Whitelist Only SOME array KEYS. ... 272
SOMING AN A Y . ..o 273
SOt () - 273
0] 11 PP 273
SO () . . oo 273
ATS O) . . 274

MAESONT() 275
NALCASESOMT()t 275
SNURI () . .. 276
SOTE) - e 276
URSOME() . -ttt 276
UKSOTE) . .o 277
EXchange values With KEYS. ... e 278
Merge tWo arraysS iNtO ONE AITAYoiii ettt ettt ettt ettt e et 278
Chapter 54: MONGO-PNP 279
) 1= GO 279
B S . .o 279
Everything in between MongoDB and Php. 279
Chapter 55: Multi Threading EXtE@NSION.......... 282
REMAIKS . .. 282
= 10] 0] 5 282
GettiNg SEAMEA.o 282
UsiNg POOIS @and WOTKETS.ottt e e e e 283
Chapter 56: MUIIProCesSINg ... 285
EX AL . .. 285
Multiprocessing using built-in fork fUNCLIONS. 285
Creating child process USING fOrK. i e e e 285
Inter-Process COMMUNICALION.ttt ettt et e e et 286
Chapter 57: NamMe@SPACESo 287
REMAIKS . . 287
= 1] 0] [J 287
DECIANNG NAMESPACESottt ettt et ettt et e e e 287
Referencing a class or fuNCtion iN @ NAMESPACE.ttt e 288
What Are NaAMESPACES? ettt et e e et ettt e e e e e 289
Declaring SUD-NAMESPACES.ottt e 289

RIS . 201
B S . ..o 291
Serialize JUNSEAlize. o 291
The Serializable INterface. 291
Chapter 59: OPEIatOrS. 293
I OdUCTION. e 293
RIS 293

[1 11] o [T U 294
SHNG OPErators (- AN (2. .ottt e e e e e e e e 294
BaSIC ASSIgNMENE (2] . oottt 294
Combined ASSIGNMENT (1= BTC) . . .« ..ttt ettt et e et e e e 295
Altering operator precedence (With ParentheSEeS).t e 296
ASSOCIALION ettt e e 296
Left @SSOCIAtION. 296
RIGNt @SSOCIAtIONo 296
COMPANISON OPEIALOIS.ttt e 297
B QUL o 297
Comparison Of ODJECES 297
Other commonly USed OPEIAtOrS 297
SPACESNID O PO a Or (o) .. 298
NUIl Coalescing OPerator (22). 299
INStANCEOT (1Y P OPEIaLOr) . .. o o 300
AV LS 301
Older versions of PHP (before 5.0)....... ... 302
TEINAIY OPEIALOE (2:) . . ettt 302
Incrementing (++) and Decrementing OPerators (==). ... 303
EXECULION OPEIATON (7). ettt 303
Logical Operators (&&/AND and [[/OR)...... ..o 303
BItWISE O P A0S e 304

Example Uses Of DitMasKS. 304
Bit-Shifting OperalorS 306
Example uses of bit Shifting:...........ooo 306
Object and Class OPEIatOrS.ttt et e ettt 306
Chapter 60: Output BUffering.......... ... 309
P A A O S . .o 309
= 1] 0] [J 309
Basic usage getting content between buffersand clearing................... 309
Nested OULPUL DU IS . . . e 310
Capturing the output BUffer 10 re-USe |ater. e 311
Running output buffer before any content. 312
Using Output buffer to store contents in a file, useful for reports, invoicesetc. ..., 312
Processing the buffer via a callback. 313
Stream OULPUL 10 ClIENT. et e e e e e 313
Typical usage and reasons for USiNg Ob_Start. it 314
Chapter 61: Outputting the Value of aVariable............................. .. 315
INEEOTUCTIONo e 315
RIS . .. 315
B S . ..o 315
BCNO AN PIINL. . 315
Shorthand notation for @Cho........ 316
PrONty Of PIiNt . . 316
Differences betweenecho and print................. 317
Outputting a structured view of arrays and ObJECES. 317
print_r() - Outputting Arrays and Objects for debugging.............oooi i 317
var_dump() - Output human-readable debugging information about content of the argument(s) 318
var_export() - Output valid PHP Code. ... 319
PIINEE VS SNt . e 319
String concatenation With ©CNO. 320

String concatenation vs passing multiple argumentstoecho......................... 320

OULPULLING [arge INtEOEIS ottt et e e e e e e e e e 321

Output a Multidimensional Array with index and value and printintothetable.................................... 321
Chapter 62: Parsing HT ML 323
E XAl . .. 323
Parsing HTML frOm @ StriNg.ottt e e e e e e e 323
USINg XPath. . .. 323
SIMPIEXIMIL . .o e e 323
PSSOt ON 323
Parsing XML using procedural approach............ ... 324
Parsing XML using OOP approach........... ... 324
Accessing Children and AttribUtes. ... 324
When you KnOwW their NamMeS:o 324
When you don't know their names (or you don't want to know them):.. 325
Chapter 63: Password Hashing FUNCtions........................ ., 326
[T OTUCTION. ... e e 326
)Y 1= ¥ GO 326

R MK . . 326
AlGOrithm SeIECHION. .. 326
SeCUre algOrtNMIS . 326
INSECUIe algOrtNMS . .. 326
EXAMIDIES . . 327
Determine if an existing password hash can be upgraded to a stronger algorithm................................ 327
Creating a password hash. 328
Salt for passWOrd Nash. 329
Verifying a password against @ hash. 329
Chapter 64: PDOo 331
o0 T o o 331
)11 331

R MK . .. 331
= 1] 0] [331

Basic PDO Connection and RetrieVval. i e 331

Preventing SQL injection with Parameterized QUEIIES. oottt e 332

PDO: connecting to MySQL/MariaDB SEIVEt et 333
Standard (TCP/IP) CONNECHION. 333
SOCKEt CONMNECHION e 334

Database Transactions With PDO 334
PDO: Get number of affected rows by a qUErY.o i 337
PDOIASINSEITIA() 338
Chapter 65: PerformancCe. 339
= 1] 0] [T 339

Profiling With XHPrOT. . . 339

/=70 0] YA F7= T 1= P 339

Profiling With Xdebug 340
Chapter 66: PHP BUIlt in SeIVer. 343

I OdUCTION. . e 343
P A A O S . 343
RIS . 343
EX AL . .. 343

RUNNING the BUIIL IN SEIVET . .. e e e e e 343

built in server with specific directory and router SCHPL.ooi it e 344
Chapter 67: PHP MySQLi. ... 345

I OdUCTION. . e 345
RIS . 345
FaUN S ... 345
AR EINAIVES 345
E XM S . .o 345

MYSQLI CONNECT. . ..ttt ettt et e e e e e e e e e e 345

251 I 1o U= 346

Loop through MyS QLI rESUIS. e e e e e e e 347

ClOSE CONNEBCTION.ttt et et e e e e e e e e e e 348

Prepared statements in MYSQLi. e e 348

ESCaAPING SUlINGS . . . ottt et 349

MYSQLIINSEIT ID . ..ottt e e e e 350

Debugging SQL IN MYSQLi. ..ot e e 351
How to get data from a prepared Statement. 352
Prepared StatemeNtS 352
Binding Of resSUItS 352
What if | cannot install mysqInd?. ... 353
Chapter 68: php mysqli affected rows returns 0 when it should return a positive integer.......... 355
I OTUCTION. e 355
= 1] 0] [T 355
PHP's $stmt->affected_rows intermittently returning O when it should return a positive int....................... 355
Chapter 69: PHPDOC.o 356
)Y 1= ¥ G 356
REMIAIKS . . 356
= 1] 0] [J 357
Adding metadata to fUNCHONS. o e e e e e e e 357
Adding metadata to fileS. s 357
Inheriting metadata from Parent SITUCTUIES.ottt e e e e e 358
Describing avariable. 358
DESCHDING ParamMEIErS 359
170]1 1= o1 1o T - 359
GNBIICS SYNMUAX 359
XIS . . 360
Chapter 70: Processing Multiple Arrays Together..................... 362
E XAl S . .. 362
MEIQE OF CONCAIENALE AITAYS. . ..\ttt ettt ettt e ettt e et et e et e e et e et e e e et e s 362

F N g |V) (=] (1=t (o] o 362
Combining two arrays (keys from one, values from another)........ ... 363
Changing a multidimensional array to0 asSOCIatIVE aITAYttt 363
AP el 70 PO R ... 365
BT OTUCTION. e e e 365

= 10] 0] [J 365

PSR-4: AULOIOATEY o 365

PSR-1: BasiC CodiNg StaNCard.ooiitt ettt e e 366
PSR-8: Huggable INterface. e s 366
Chapter 72: Reading Request Data. ... 368
REMIAIKS . . 368
Choosing between GET and POS T 368
Request Data Vulnerabilities. 368
= 1] 0] [J 368
Handling file Upload ©ITOrS. e e e e e e e 368
REAdING POST QaaA.ottt e e et 369
Reading GET data. e e e e e e 369
Reading rawW POST Gata.ttt e et 370
Uploading files With HT TP PU T e e e e e e 370
PasSiNg arrays DY PO ST . .. 371
Chapter 73: RECIPES 373
[T OTUCTION. e e 373
= 1] 0] [373
Create @ Site VISIE COUNTEI. et e e e 373
Chapter 74: RefereNCeS 374
)11 374
REMIAIKS . . 374
= 1] 0] [T 374
ASSIgN DY REIOIENCE 374
RetUrN DY R EIENCE. . .. e e e 375

N O S . . 376
Pass DY REIEIENCE. ... 376
AT QY S . . 376
FUNCHIONS 377
Chapter 75: RefleCtion........ ... 379
EXAMIDIES . . 379

Accessing private and protected member variables. ... 379

Feature detection oOf ClasSes Or ODJECES.ot e e 381

Testing private/protected MethOdS. ... i e 382
Chapter 76: Regular Expressions (regexp/PCRE).................ooi i, 384
1= 384

P A A B S . 384
RIS . 384

[1 11] o [T 384
String matching With regular eXpreSSIONS. i 384
Split string into array by a regular @XPreSSION.t e 385
String replacing wWith regular @XPreSSiON. e 385
Global RegEXD MatCh 386
String replace with callback. 387
Chapter 77: Secure Remeber Me................... 389
I OdUCTION. . e 389
EX APl . . 389
“Keep Me Logged In” -the best approach. 389
Chapter 78: SeCUIY 390
INErOdUCTION. . e 390
RIS . 390
B S . ..o 390
ErTOr REPOIING . . oottt e e e e e e 390

A QUICK SOIULION. . .. et e e e 390

[F= Lo 1T To T =T £ & 390
CroSS-Site SCHPUNG (XSS) . .ottt e e e e 391
0] 0] =T P 391
SOIUL ON . .. 392
FItEr FUNCHIONS.ttt e e e e e e 392

L LY = g Yoo Yo L1 o 392
URL ENCOUING . ..ot e e e e e e e e e e e e e 392
Using specialised external libraries or OWASP AntiSamy liStS. ... 393

FIle INCIUSION. . . 393

Remote File INCIUSION. ... e 393

Solution to RFI & LF L. ... 393
Command LiNe INJECHION. 394
0] 0] =T 394
SOIULION . . . 394

PHP Version LEaKAGE.ottt e e et e e e e e e e e 395

S] o] 11 o T 1= 1o 1= S 395
BaSIC EXaMIPIE. . o 395
F N o111V o T = 1o 1= 396
[N 0=) 396

CrOSS-Site REQUESE FOIQOIYottt e e ettt e e e e e e e 396
0] 0] =T P 396
SOIULION . . . 397
SAMPIE COUB. ..o 397

Uploading filles. 398
The Uploaded data:. ... e 398
Exploiting the file name. o 398
Getting the file name and extension safely........... ... 399
Mime-type Validation. o 399
White listing YOUr UPIOAdS. ... 400

Chapter 79: Sending Email........... ... 401
P A A B S . o 401
RIS . 401
E XAl S . .. 402

Sending Email - The basics, more details, and afullexample..............o 402
Sending HTML Email Using Mail().o.oiri i e e e e e 405
Sending Plain Text Email Using PHPMaller. e e 405
Sending Email With An Attachment Using mail()...... ... e 406

Content-Transfer-ENCOdiNgsS 407

Sending HTML Email Using PHPMaIIEr. ... e 408

Sending Email With An Attachment Using PHPMailer. 408

Sending Plain Text Email Using Sendgrid....... ... 409

Sending Email With An Attachment Using Sendgrid................o 410
Chapter 80: Serialization............................. .1
) 1= ¥ G 411

P A A B S . o 411
REMIAIKS . . 411

E XM S . .o 412
Serialization oOf differeNt Y PES.o 412
Serializing & StiNg 412
Serializing adouble. ... 412
Serializing a float.o 412
Serializing an INEQOTo 412
Serializing aboolean. 412
Serializing NUIL. 413
Serializing an arTaY 413
Serializing an ObJeCt. 413
Note that Closures cannot be serialized:...................... 414
Security Issues With UNSerialize. ... 414
POSSIDIE ATTACKS.o 414
PHP ODJeCt INJECHON. e e e e e e e e e e e e 414
Chapter 81: SESSIONS 417
)Y 1= GO 417
REMIAIKS . . 417

E XM S . . oo 417
Manipulating SESSION datal.oooui it ALT
L5 0 11T 418
DEeSIroy @n ENIrE SESSION.ttt et ettt e e e e 418
SESSION_SAM() OPliONS . ..ottt et e e 419
SESSION NMAME . . .ttt et ettt e et e e 419
Checking if session cookies have beencreated........................... 419

Changing SeSSION NAMI 420

SESSION LOCKING . .. 420

Safe Session Start With N0 EITOrS. 421
Chapter 82: SIMpleXML 422
= 1] 0] [T 422
Loading XML data into SIMpPIeXml. e e 422
Loading frOm StINg 422
Loading from file.o 422
Chapter 83: SOAP Client.o 423
11 423

P A A O S . . 423
RIS . ..o 423
= 1011 5 425
WSDL MOGEttt 425
NON-WSDL MOOE. . ..ottt ettt et e e et e e e e e e e 425

(0 F= TS 14 F= T o1 U 426
Tracing SOAP request and FESPONSE.ttt ettt e ettt 427
Chapter 84: SOAP SeIVET 428
) 1= ¥ G 428
= 101 0] [T 428
BASIC SOAP SBIVE e e 428
Chapter 85: SOCKELS 429
= 1] 0] [J 429
TCP ClENt SOCKEL. . ..o e e e e e e e e e 429
Creating a socket that uses the TCP (Transmission Control Protocol)................................. 429
Connect the socket to a specified address................... 429
Sending data to the SEIVEr.o 429
Receiving data from the Server. 429
ClosiNg the SOCKeLo 430
TCP SEIVEI SOCKET. . ..o 430
Socket Creation. 430

Socketbinding.................. ... 430

Setasocket to ISteNING 431

Handling CoNNECHION. 431
Closing the SeIVer.o 431
HaNAIiNg SOCKEL ©ITOISttt e 431
UDP SEIVEI SOCKET. 431
Creating @ UDP server SOCKet. 432
Binding a socketto an address............ ... 432
SeNdiNg @ PACKeT 432
ReceiVINg @ PaCKeto 432
CloSING the SBIVY 432
Chapter 86: SPL data StrUCIUIES 433
= 1] 0] [T 433
SPIFIXEAAITAY . . . e e e e e 433
Difference from PHP Array 433
Instantiating the array ... 435
ResiziNg the array 435
Import to SplFixedArray & Export from SplFIXedArray. ... 436
Chapter 87: SIS 438
= 1] 0] [J 438
Querying a database. 438
Retrieving ONly ONe FESUIL. e et e e e e e e e 438
SQLite3 QUICKSTArt TULOIIAL.ttt e et e e e e e e e e e 438
Creating/opening adatabase...................... 438
Creating atable 439
Inserting sample data. 439
Fetching data. 439
SNOMtNANAS 440
CleaANING UP . .. o 440
Chapter 88: St EaAMS i 441

P Al A O S . . . 441

RIS . 441
B S . ..o 441
REQISIEINING @ SITEAM WIAPPEYttt ettt ettt e e e e e e e e e e e e e e 442
Chapter 89: String formatting ... 444
B S . ..o 444
EXtracting/replacing SUDSIIINGSot e e e 444
SHNG INEEIPOIAtIONo ettt 444
Chapter 90: String Parsing.o 447
RIS . 447
= 10111 5 447
Splitting @ StriNg DY SEPAratOrS.o 447
Searching a substring With StrpOS. o 448
Checking if @ SUDSEIING @XIStS.o 448
Search starting froman offset.................... 448
Get all occurrences of a SUDSEIING ... 449
Parsing string using regular @XPreSSIONS.t 449
SUD S NG . ..o 450
Chapter 91: Superglobal Variables PHP 452
INErOTUCTION. e e 452

E XM S . . oo 452
PHPS SUPEIGIODAIS. . ..o e e e 452
Suberglobals explained. 455

It OdUCH ON. ... 455
What's @ SUPEIgIODal 22 455
Tellme more, tell Me MOTe 456
B L OB AL S . 456
Becoming global. 457

B SE RV E R .. 457
B G E T o 459

B R L E S . 460

B COOKIEttt 462
B O E S S ON . 462
B REQUEST ... 463
B BNV 463
Chapter O2: TrailS 464
E XM S . .o 464
Traits to facilitate horizontal COOE rEUSE. i e e e 464
CoNfliCt RESOIULION. e e e e 465
MUIEIPIE TraitsS USAQgEottt et e e e e e e e e e e e e e e e e 466
Changing Method Visibility e e e e e 467
WAt IS @ Trail 2. ..ot e e e e e 467
When should 1 USE @ Trail?. e e e 468
Traits to Keep ClasSSeS Clean.o e e e 468
Implementing a SINGIEtoN USING TraitS.ttt et e e e e 469
Chapter 93: Type hinting................... L AT 2
R 1] 472
RIS . 472
EX APl . .. 472
Type hinting scalar types, arrays and callables. ... 472

AN EXception: SPeCial TYPESo 474
Type hinting geNeriC ODJECES.o 474
Type hinting classes and INterfaces. 475
Classtype hint... ATD
Interface type NiNt. 475
Self type hiNts.o 476
Type Hinting NO RetUrn(Void)o oo e 476
NUIEDIE Y PE NINES. .. 477

P A MO TS 477
REIUIN VaIUBS 477

Chapter 94: Type juggling and Non-Strict Comparison ISSU€S.......................ccocoiiiiiin. 478

What IS TYPE JUGGIING 2. .ttt e e e e e e e 478
Reading from @ file.o 479
YT (ol g IS0] 1= 479
EXPICIE CASTING 480
AVOIO SWITCN . .o e 480
SO Iy PING . . oottt et e e e 481
APt O Ty P S . .. i 482
= 1] 0] [T 482
12T 0= P 482
SIS . ettt 483
SINGIE QUOTEA. ... o 483
DOUBIE QUOLEM. 483
HEIEAOC. . .. 484
NOWOC . .. e e e e 484
BOOIEAN . . . 4384
0T 486
VA NING . 486
Callable. ... 487
UL 487
Nullvs undefined variable............ ... 487
TYPE COMPAIISON . .. 488
TYPE CaS NG oo 488
RS OUICS 489
TYPE JUGGIING . . . 490
Chapter 96: Unicode Support in PHP ... 491
= 1] 0] [J 491
Converting Unicode characters to “\luxxxx” format using PHP....... ... 491
HOW 10 LS L. e e 491
UL PUL L. o e 491

U DU L. 493
Intl extention for UNiCOAE SUPPOIT.ttt ettt e e e e e e e e e e 493
Chapter 97: Unit TeStiNg 494
) 1= G 494
REMIAIKS . . 494
= 10] 0] [T 494
TESHNG ClasS TUIESo e e e e e e e e e 494
PHPUNIt Data PrOVIOEIS. ...t e e e e e e e 497
ATAY OF AITAYS 498
1T 50T £ 499
LCT=T [T = 0] = 500
LI A=) (o =T o T 1 501
Chapter 98: URLS. o 503
B AL S . .. 503
ParSiNg @ UR Lottt e 503
Redirecting to another UR Lo e e e e e e 503
Build an URL-encoded query String from @n array............co.oouiiiii e 504
Chapter 99: Using CURL in PHP 506
)Y 1= ¥ GO 506

P A M OIS 506
= 1] 0] [J 506
BasiC Usage (GET REOQUESES)ttt ettt e ettt e e e e e e e 506
POST REOQUESES. . .ot e e e e e e 507
Using multi_curl to make multiple POST reQUESES.ttt 507
Creating and sending a request with a custom method. i 509
USING COOKIES. . .ottt e e e e e e e e 509
Sending multi-dimensional data and multiple files with CurlFile inone request..................... ..o, 510

Get and Set custom http headers IN Php. ... 513
Chapter 100: Using MONQODB 515
EX APl . .. 515

CoNNECT IO MONQODI B e et e e e e 515

Get one document - fINAONE()ottt e 515

Get multiple documents - fINA(). 515
INSEIT AOCUMENT. . .ottt e e e e e e e e e 515
Update @ OCUMENT.ttt e e et e et et e e e e e e e et 516
Delete @ dOCUMENL.ttt e e e e e e e e e 516
Chapter 101: Using Redis With PHP ..., 517
= 10] 0] [T 517
Installing PHP Redis 0n UBDUNTU. e 517
Connecting to @ RIS INSIANCE.o e e e e e 517
Executing Redis commands in PHP 517
Chapter 102: Using SQLSRV ... 518
REMIAIKS . .. 518

E XAl . . . 518
Creating @ CONNECHION.ttt e et e e e e e e e 518
MaKing @ SIMPIE QUETYo e ettt e e e e 519
INVOKING @ StOred ProCEAUIE. e e e e e e e e e e 519
Making a ParameteriSed QUETYttt ettt e e e e e e 519
Fetching QUEINY RESUIS. e e e e e e e e e e e 520
SOISIV_fetCh array ().o 520
SOISIV_fetCh 0D ECt). ... 520
SOISIV OO ... 520
REtreVING ErrOr MBSSa0ESottt ettt e e e e e e e e e e 521
Chapter 108: UTF-8. ... 522
REMIAIKS . . 522
= 1] 0] [T 522
T o P 522

L6 1101 0 P 522
Data StOrage @n0 ACCESS.ttt ettt et e 523
Chapter 104: Variable SCOPe. 525
I OdU G ON . . 525
= 10] 0] [525

User-defined global variables. 525

Superglobal variables. 526

Static properties and variables. 526
Chapter 105: Variables. 528
1= 528
RIS . 528
TYPe CheCKINGo 528
= 10] 0] [T 529
Accessing A Variable Dynamically By Name (Variable variables)...............coooiiiiiii i, 529
Differences between PHPS and PHP7 530
Case 1 : BBfoo[bar [bazo 531
Case 2 : Bf00->Bbar baz 531
Case 3 : $f00->Bhar[baz']().o 531
Case 4 : FOO::Bhar ' baz (). ... 531
DA Ty P S, .ot 531
UL e 531
B0 AN 531
a1 C=T o= S PP 532
FOaE. . .. 532
ALY . e 532
SN . 533
OB, .. 533
RS OUICE . .. 533
Global variable Dest PracCliCes. e 533
Getting all defined variables.o 535
Default values of uninitialized variables. 536
Variable Value Truthiness and Identical Operator.ooiiiiii e 536
Chapter 106: WebSOCKeLS ... 540
o0 T o o 540

E XM S . . oo 540
SIMPIE TCPIIP SEIVET . ..o e e e e e e e e 540

Chapter 107: Working with Dates and Time..................o. 542

EX APl . .. 542
Parse English date descriptions into a Date format.ottt 542
Convert a date into another FOrMaL. ... i e 542
Using Predefined Constants for Date FOrmat. e 544
Getting the difference between two dates / tiImes. ... 545

Chapter 108: XML 547

= 1] 0] [J 547
Create an XML file uSiNg XMLWWIILETot e e e e e 547
Read a XML document with DOMDOCUMENT.ttt et et 547
Create a XML uSINg DOMDOCUMENT.\ttt e e e e e e e e e e e 548
Read a XML document with SIMPIEXML e e e e e 550
Leveraging XML with PHP's SImpleXML Library.o e 551

Chapter 109: YAML In PHP 554

= 1] 0] [T 554
INStalling YAML @XEENSION. . ..ottt e e et e e e e e e e 554
Using YAML to store application configuration........... e 554

(0 (=1 [- 556

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: php

It is an unofficial and free PHP ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official PHP.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/php
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

C_hapter 1. Getting started with PHP

Remarks

@D

PHP (recursive acronym for PHP: Hypertext Preprocessor) is a widely-used open source
programming language. It is especially suited for web development. The unique thing about PHP
is that it serves both beginners as well as experienced developers. It has a low barrier to entry so
it is easy to get started with, and at the same time, it provides advanced features offered in other
programming languages.

Open-Source

It's an open-source project. Feel free to get involved.
Language Specification

PHP has a language specification.

Supported Versions

Currently, there are three supported versions: 5.6, 7.0 and 7.1.

Each release branch of PHP is fully supported for two years from its initial stable release. After this
two year period of active support, each branch is then supported for an additional year for critical
security issues only. Releases during this period are made on an as-needed basis: there may be
multiple point releases, or none, depending on the number of reports.

Unsupported Versions

Once the three years of support are completed, the branch reaches its end of life and is no longer
supported.

A table of end of life branches is available.

Issue Tracker

Bugs and other issues are tracked at https://bugs.php.net/.

Mailing Lists

Discussions about PHP development and usage are held on the PHP mailing lists.
Official Documentation

Please help to maintain or to translate the official PHP documentation.

https://riptutorial.com/ 2

https://i.stack.imgur.com/xEvI0.png
https://php.net/
https://secure.php.net/get-involved.php
https://github.com/php/php-langspec
https://secure.php.net/supported-versions.php
https://secure.php.net/eol.php
https://bugs.php.net/
http://php.net/mailing-lists.php
https://secure.php.net/docs.php

You might use the editor at edit.php.net. Check out our guide for contributors.

Versions
PHP 7.x
7.1 2019-12-01 2016-12-01
7.0 2018-12-03 2015-12-03
PHP 5.x
5.6 2018-12-31 2014-08-28
55 2016-07-21 2013-06-20
54 2015-09-03 2012-03-01
53 2014-08-14 2009-06-30
5.2 2011-01-06 2006-11-02
51 2006-08-24 2005-11-24
5.0 2005-09-05 2004-07-13
PHP 4.x

Supported Until | Release Date

4.4

4.3

4.2

4.1

4.0

2008-08-07

2005-03-31

2002-09-06

2002-03-12

2001-06-23

2005-07-11

2002-12-27

2002-04-22

2001-12-10

2000-05-22

https://riptutorial.com/

http://edit.php.net/
http://doc.php.net/tutorial/
https://php.net/releases/7_1_0.php
https://php.net/releases/7_0_0.php
https://php.net/releases/5_6_0.php
https://php.net/releases/5_5_0.php
https://php.net/releases/5_4_0.php
https://php.net/releases/5_3_0.php
https://php.net/releases/5_2_0.php
https://php.net/releases/5_1_0.php
http://news.php.net/php.announce/50
https://php.net/releases/4_4_0.php
https://php.net/releases/4_3_0.php
https://php.net/releases/4_2_0.php
https://php.net/releases/4_1_0.php
http://news.php.net/php.announce/22

Legacy Versions

Supported Until | Release Date

3.0 2000-10-20 1998-06-06

2.0 1997-11-01

1.0 1995-06-08
Examples

HTML output from web server

PHP can be used to add content to HTML files. While HTML is processed directly by a web
browser, PHP scripts are executed by a web server and the resulting HTML is sent to the browser.

The following HTML markup contains a PHP statement that will add se110 wor1d! to the output:

<!DOCTYPE html>
<html>
<head>
<title>PHP!</title>
</head>
<body>
<p><?php echo "Hello world!"; ?></p>
</body>
</html>

When this is saved as a PHP script and executed by a web server, the following HTML will be sent
to the user's browser:

<!DOCTYPE html>
<html>
<head>
<title>PHP!</title>
</head>
<body>
<p>Hello world!</p>
</body>
</html>

PHP 5.x5.4

echo also has a shortcut syntax, which lets you immediately print a value. Prior to PHP 5.4.0, this
short syntax only works with the short_open_tag configuration setting enabled.

For example, consider the following code:

<p><?= "Hello world!" ?></p>

https://riptutorial.com/ 4

http://php.net/manual/php3.php
http://php.net/manual/phpfi2.php
http://museum.php.net/php1/
http://php.net/manual/en/ini.core.php#ini.short-open-tag

Its output is identical to the output of the following:

<p><?php echo "Hello world!"; ?></p>

In real-world applications, all data output by PHP to an HTML page should be properly escaped to
prevent XSS (Cross-site scripting) attacks or text corruption.

See also: Strings and PSR-1, which describes best practices, including the proper use of short
tags (<2= ... 2>).

Non-HTML output from web server

In some cases, when working with a web server, overriding the web server's default content type
may be required. There may be cases where you need to send data as p1ain text, Json, Of xur, for
example.

The neaqer () function can send a raw HTTP header. You can add the content-Type header to notify
the browser of the content we are sending.

Consider the following code, where we set content-Type &S text/plain:

header ("Content-Type: text/plain");
echo "Hello World";

This will produce a plain text document with the following content:
Hello World

To produce JSON content, use the application/json cONtent type instead:

header ("Content-Type: application/json");

// Create a PHP data array.
Sdata = ["response" => "Hello World"];

// Jjson_encode will convert it to a valid JSON string.
echo json_encode ($data) ;

This will produce a document of type app1ication/json With the following content:
{"response™:"Hello World"}

Note that the neader () function must be called before PHP produces any output, or the web server
will have already sent headers for the response. So, consider the following code:

// Error: We cannot send any output before the headers
echo "Hello";

// All headers must be sent before ANY PHP output
header ("Content-Type: text/plain");
echo "World";

https://riptutorial.com/ 5

http://www.riptutorial.com/php/example/11883/cross-site-scripting--xss-
http://www.riptutorial.com/php/example/1027/strings
http://www.php-fig.org/psr/psr-1/
http://php.net/manual/en/function.header.php
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse

This will produce a warning:

Warning: Cannot modify header information - headers already sent by (output started
at /dir/lexample.php:2) in /dir/example.php on line 3

When using neader (), its output needs to be the first byte that's sent from the server. For this
reason it's important to not have empty lines or spaces in the beginning of the file before the PHP
opening tag <2php. FOr the same reason, it is considered best practice (see PSR-2) to omit the
PHP closing tag -»> from files that contain only PHP and from blocks of PHP code at the very end
of a file.

View the output buffering section to learn how to 'catch’ your content into a variable to output
later, for example, after outputting headers.

Hello, World!
The most widely used language construct to print output in PHP is echo:

echo "Hello, World!\n";

Alternatively, you can also use print:

print "Hello, World!\n";

Both statements perform the same function, with minor differences:

* echo has a void return, whereas print returns an int with a value of 1

* ccho Can take multiple arguments (without parentheses only), whereas print only takes one
argument

* ccho IS slightly faster than print

Both echo and print are language constructs, not functions. That means they do not require
parentheses around their arguments. For cosmetic consistency with functions, parentheses can be
included. Extensive examples of the use of echo and print are available elsewhere.

C-style print £ and related functions are available as well, as in the following example:

printf ("%$s\n", "Hello, World!");

See Outputting the value of a variable for a comprehensive introduction of outputting variables in
PHP.

Instruction Separation

Just like most other C-style languages, each statement is terminated with a semicolon. Also, a
closing tag is used to terminate the last line of code of the PHP block.

If the last line of PHP code ends with a semicolon, the closing tag is optional if there is no code

https://riptutorial.com/ 6

http://www.php-fig.org/psr/psr-2/#2-2-files
http://www.riptutorial.com/php/topic/541/output-buffering
http://www.phpbench.com/
http://www.riptutorial.com/php/example/730/echo-and-print
http://www.riptutorial.com/php/topic/6695/outputting-the-value-of-a-variable

following that final line of code. For example, we can leave out the closing tag after echo "no
error"; in the following example:

<?php echo "No error"; // no closing tag is needed as long as there is no code below

However, if there is any other code following your PHP code block, the closing tag is no longer
optional:

<?php echo "This will cause an error if you leave out the closing tag"; 2>
<html>

<body>

</body>
</html>

We can also leave out the semicolon of the last statement in a PHP code block if that code block
has a closing tag:

<?php echo "I hope this helps! :D";
echo "No error" 727>

It is generally recommended to always use a semicolon and use a closing tag for every PHP code
block except the last PHP code block, if no more code follows that PHP code block.

So, your code should basically look like this:

<?php
echo "Here we use a semicolon!";
echo "Here as well!";
echo "Here as well!";
echo "Here we use a semicolon and a closing tag because more code follows";
?>
<p>Some HTML code goes here</p>
<?php
echo "Here we use a semicolon!";
echo "Here as well!";
echo "Here as well!";
echo "Here we use a semicolon and a closing tag because more code follows";
?>
<p>Some HTML code goes here</p>
<?php
echo "Here we use a semicolon!";
echo "Here as well!";
echo "Here as well!";
echo "Here we use a semicolon but leave out the closing tag";

PHP CLI

PHP can also be run from command line directly using the CLI (Command Line Interface).

CLI is basically the same as PHP from web servers, except some differences in terms of standard
input and output.

https://riptutorial.com/

Triggering

The PHP CLI allows four ways to run PHP code:

1. Standard input. Run the pnp command without any arguments, but pipe PHP code into it:
echo '<?php echo "Hello world!";' | php

2. Filename as argument. Run the php command with the name of a PHP source file as the first
argument:

php hello_world.php

3. Code as argument. Use the -r option in the php command, followed by the code to run. The
<2php OpPeN tags are not required, as everything in the argument is considered as PHP code:

php -r 'echo "Hello world!";'

4. Interactive shell. Use the -a option in the php command to launch an interactive shell. Then,
type (or paste) PHP code and hit return:

$ php -a

Interactive mode enabled
php > echo "Hello world!";
Hello world!

Output

All functions or controls that produce HTML output in web server PHP can be used to produce
output in the stdout stream (file descriptor 1), and all actions that produce output in error logs in
web server PHP will produce output in the stderr stream (file descriptor 2).

Example.php

<?php

echo "Stdout 1\n";

trigger_error ("Stderr 2\n");

print_r ("Stdout 3\n");

fwrite (STDERR, "Stderr 4\n");

throw new RuntimeException ("Stderr 5\n");
7>

Stdout 6

Shell command line

$ php Example.php 2>stderr.log >stdout.log;\
> echo STDOUT; cat stdout.log; echo;\
> echo STDERR; cat stderr.log\

STDOUT

https://riptutorial.com/

Stdout 1
Stdout 3

STDERR
Stderr 4
PHP Notice: Stderr 2
in /Example.php on line 3
PHP Fatal error: Uncaught RuntimeException: Stderr 5
in /Example.php:6
Stack trace:
#0 {main}
thrown in /Example.php on line 6

Input
See: Command Line Interface (CLI)

PHP built-in server

PHP 5.4+ comes with a built-in development server. It can be used to run applications without
having to install a production HTTP server such as nginx or Apache. The built-in server is only
designed to be used for development and testing purposes.

It can be started by using the -s flag:

php -S <host/ip>:<port>

E;énwﬂeusage

1. Create an index.php file containing:

<?php
echo "Hello World from built-in PHP server";

2. Run the command php -s localhost:soso from the command line. Do not include nttp://.
This will start a web server listening on port 8080 using the current directory that you are in
as the document root.

3. Open the browser and navigate t0 http://1ocalhost:8080. YOU should see your "Hello World"
page.

Configuration

To override the default document root (i.e. the current directory), use the -« flag:

php —-S <host/ip>:<port> -t <directory>

https://riptutorial.com/

http://www.riptutorial.com/php/topic/2880/command-line-interface--cli-

E.g. if you have a pub1ic/ directory in your project you can serve your project from that directory
US“1g php -S localhost:8080 -t public/

Logs

Every time a request is made from the development server, a log entry like the one below is
written to the command line.

[Mon Aug 15 18:20:19 2016] ::1:52455 [200]: /

PHP Tags

There are three kinds of tags to denote PHP blocks in a file. The PHP parser is looking for the
opening and (if present) closing tags to delimit the code to interpret.

Standard Tags

These tags are the standard method to embed PHP code in a file.

<?php
echo "Hello World";
>

PHP 5.x5.4

Echo Tags

These tags are available in all PHP versions, and since PHP 5.4 are always enabled. In previous
versions, echo tags could only be enabled in conjunction with short tags.

<?= "Hello World" 2>

Short Tags

You can disable or enable these tags with the option short_open_tag.

echo "Hello World";
2>

Short tags:

« are disallowed in all major PHP coding standards

https://riptutorial.com/

http://www.php-fig.org/psr/psr-1/

 are discouraged in the official documentation

 are disabled by default in most distributions

* interfere with inline XML's processing instructions

» are not accepted in code submissions by most open source projects

PHP 5.x5.6

ASP Tags

By enabling the asp_tags option, ASP-style tags can be used.

echo "Hello World";
%>

These are an historic quirk and should never be used. They were removed in PHP 7.0.

Read Getting started with PHP online: https://riptutorial.com/php/topic/189/getting-started-with-php

https://riptutorial.com/ 11

https://secure.php.net/manual/en/language.basic-syntax.phptags.php
https://riptutorial.com/php/topic/189/getting-started-with-php

C_hapter 2. Alternative Syntax for Control
Structures

Syntax

e structure: /* code */ endstructure;

Remarks

When mixing the alternative structure for switch with HTML, it is important to not have any
whitespace between the initial switch (scondition): and first case svaiue:. Doing this is attempting
to echo something (whitespace) before a case.

All control structures follow the same general idea. Instead of using curly braces to encapsulate
the code, you're using a colon and endstructure; Statement: structure: /* code */ endstructure;

Examples
Alternative for statement

<?php

for ($i = 0; $i < 10; $i++):
do_something ($1i) ;

endfor;

7>

<?php for ($1 = 0; $i < 10; $i++): 2>

<p>Do something in HTML with <?php echo $i; ?></p>
<?php endfor; ?>

Alternative while statement

<?php

while ($condition) :
do_something() ;

endwhile;

7>

<?php while ($condition): ?>

<p>Do something in HTML</p>
<?php endwhile; 2>

Alternative foreach statement

https://riptutorial.com/

12

<?php

foreach (Scollection as $item) :
do_something ($item) ;
endforeach;

7>

<?php foreach ($collection as $item): ?>
<p>Do something in HTML with <?php echo $item; ?></p>
<?php endforeach; ?>

Alternative switch statement

<?php

switch ($condition) :
case S$value:
do_something () ;
break;
default:
do_something_else();
break;
endswitch;

7>

<?php switch ($condition): ?>
<?php case $value: /* having whitespace before your cases will cause an error */ ?>
<p>Do something in HTML</p>
<?php break; ?>
<?php default: ?>
<p>Do something else in HTML</p>
<?php break; ?>
<?php endswitch; ?>

Alternative if/else statement

<?php

if (Scondition) :
do_something () ;

elseif ($Sanother_condition) :
do_something_else();

else:
do_something_different ();

endif;

7>

<?php if ($condition): ?>
<p>Do something in HTML</p>
<?php elseif ($another_condition): ?>
<p>Do something else in HTML</p>
<?php else: 7?>
<p>Do something different in HTML</p>
<?php endif; ?>

https://riptutorial.com/

13

Read Alternative Syntax for Control Structures online:
https://riptutorial.com/php/topic/1199/alternative-syntax-for-control-structures

https://riptutorial.com/

14

https://riptutorial.com/php/topic/1199/alternative-syntax-for-control-structures

C_hapter 3: APCu

Introduction

APCu is a shared memory key-value store for PHP. The memory is shared between PHP-FPM
processes of the same pool. Stored data persists between requests.

Examples

Simple storage and retrieval
apcu_store Can be used to store, =pcu_retch to retrieve values:

Skey = 'Hello';

Svalue = '"World';

apcu_store (key, Svalue);

print (apcu_fetch ('Hello')); // 'World'

Store information
apcu_cache info provides information about the store and its entries:
print_r (apcu_cache_info());

Note that invoking apcu_cache_info () Without limit will return the complete data currently
stored.

To only get the meta data, US€ apcu_cache_info (true).

To get information about certain cache entries better use arcurterator.

Iterating over Entries
The rrcutterator allows to iterate over entries in the cache:

foreach (new APCUIterator () as Sentry) {
print_r (Sentry);
}

The iterator can be initialized with an optional regular expression to select only entries with
matching keys:

foreach (new APCUIterator (Sregex) as S$Sentry) {
print_r (Sentry);
}

Information about a single cache entry can be obtained via:

https://riptutorial.com/ 15

http://php.net/manual/de/function.apcu-store.php
http://php.net/manual/de/function.apcu-fetch.php
http://php.net/manual/en/function.apcu-cache-info.php
http://php.net/manual/en/class.apcuiterator.php

Skey = '.';
Sregex = '(®' . preg_quote (Skey) . 'S$S)';
print_r ((new APCUIterator (Sregex))->current ());

Read APCu online: https://riptutorial.com/php/topic/9894/apcu

https://riptutorial.com/

16

https://riptutorial.com/php/topic/9894/apcu

C_hapter 4: Array Iteration

Syntax

« for ($i = 0; $i < count($array); $i++) { incremental_iteration(); }
for ($i = count($array) - 1; $i >= 0; $i--) { reverse_iteration(); }
foreach ($data as $datum) { }

foreach ($data as $key => $datum) { }

foreach ($data as &$datum) { }

Remarks

gmparison of methods to iterate an array

foreach The simplest method to iterate an array.
foreach Dy reference = Simple method to iterate and change elements of an array.

for With incremental Allows iterating the array in a free sequence, e.g. skipping or reversing
index multiple elements

Internal array It is no longer necessary to use a loop (so that it can iterate once
pointers every function call, signal receive, etc.)
Examples

Iterating multiple arrays together
Sometimes two arrays of the same length need to be iterated together, for example:

Speople = ['Tim', 'Tony', 'Turanga'];
$foods = ['chicken', 'beef', 'slurm'];

array_map IS the simplest way to accomplish this:

array_map (function ($Sperson, S$food) {
return "S$person likes $food\n";
}, Speople, S$foods);

which will output:

https://riptutorial.com/ 17

Tim likes chicken
Tony likes beef
Turanga likes slurm

This can be done through a common index:

assert (count ($Speople) === count ($foods)) ;
for ($1 = 0; $i < count ($Speople); $i++) {
echo "S$people[$i] likes $foods([$i]\n";

If the two arrays don't have the incremental keys, array_values (sarray) [$i] can be used to replace

Sarray[$i].

If both arrays have the same order of keys, you can also use a foreach-with-key loop on one of the
arrays:

foreach ($people as $index => S$person) {
Sfood = S$foods[$index];
echo "S$person likes $food\n";

Separate arrays can only be looped through if they are the same length and also have the same
key name. This means if you don't supply a key and they are numbered, you will be fine, or if you
name the keys and put them in the same order in each array.

You can also use array_combine.

ScombinedArray = array_combine ($people, $foods);
// $combinedArray = ['Tim' => 'chicken', 'Tony' => 'beef', 'Turanga' => 'slurm'];

Then you can loop through this by doing the same as before:

foreach ($combinedArray as Sperson => S$Smeal) {
echo "S$person likes $meal\n";

Using an incremental index

This method works by incrementing an integer from 0 to the greatest index in the array.

Scolors = ['red', 'yellow', 'blue', 'green'];
for ($i = 0; $i < count (Scolors); S$i++) {
echo 'I am the color ' . S$colors[$i] . '
';

This also allows iterating an array in reverse order without using array_reverse, Which may result in
overhead if the array is large.

Scolors = ['red', 'yellow', 'blue', 'green'];

https://riptutorial.com/ 18

for ($i = count ($colors) — 1; $i >= 0; $i——) {
echo 'I am the color ' . $colors[$i] . '
';

You can skip or rewind the index easily using this method.

Sarray = ["alpha", "beta", "gamma", "delta", "epsilon"];
for ($1 = 0; $i < count(Sarray); S$i++) {
echo $array[$i], PHP_EOL;

if (Sarray[$i] === "gamma") {
Sarray[$i] = "zeta";
$1 -= 2;
} elseif ($Sarray[$i] === "zeta") {
Sit++;
t
t
Output:
alpha
beta
gamma
beta
zeta
epsilon

For arrays that do not have incremental indices (including arrays with indices in reverse order, e.g.
[l => "foo", 0 => "bar"], ["foo" => "f", "bar" => "b"]), this cannot be done direCtIy. array_values
Or array_keys can be used instead:

Sarray = ["a" => "alpha", "b" => "beta", "c" => "gamma", "d" => "delta"];
Skeys = array_keys ($Sarray) ;
for ($i = 0; $i < count ($Sarray); $i++) {

Skey = S$Skeys[S$i];

Svalue = S$Sarray[S$Skey];

echo "S$value is S$key\n";

Using internal array pointers

Each array instance contains an internal pointer. By manipulating this pointer, different elements of
an array can be retrieved from the same call at different times.

USIng each

Each call to cach () returns the key and value of the current array element, and increments the
internal array pointer.

$array = ["f" :> "fOO", "b" :> "bar"] ,.
while (list ($key, $value) = each($array)) {
echo "$value begins with $key";

https://riptutorial.com/ 19

http://php.net/each

USING aex:

Sarray = ["Alpha", "Beta", "Gamma", "Delta"];
while (($value = next ($Sarray)) !== false) {
echo "S$value\n";

Note that this example assumes no elements in the array are identical to boolean raise. TO
prevent such assumption, use =, to check if the internal pointer has reached the end of the array:

Sarray = ["Alpha", "Beta", "Gamma", "Delta"];
while (key($Sarray) !== null) {
echo current ($array) . PHP_EOL;

next ($array) ;

This also facilitates iterating an array without a direct loop:

class ColorPicker {
private $colors = ["#FF0064", "#0064FF", "#64FF00", "#FF6400",
public function nextColor () : string {
Sresult = next ($Scolors);
// if end of array reached
if (key(S$colors) === null) {
reset (Scolors) ;
}

return Sresult;

Using foreach

Direct loop

foreach (Scolors as S$color) {
echo "I am the color $color
";

L_oop with keys

$foods = ['healthy' => 'Apples', 'bad' => 'Ice Cream'];
foreach ($foods as $key => $food) {
echo "Eating $food is S$key";

"#00FF64",

"#6400FF"];

https://riptutorial.com/

20

http://php.net/next
http://php.net/key

Loop by reference

In the foreach lOOPS in the above examples, modifying the value (scoior Or sfood) directly doesn't
change its value in the array. The s operator is required so that the value is a reference pointer to
the element in the array.

Syears = [2001, 2002, 3, 4];
foreach (Syears as &Syear) {
if (Syear < 2000) Syear += 2000;

This is similar to:

Syears = [2001, 2002, 3, 4]1;
for($i = 0; $i < count ($Syears); $i++) { // these two lines
Syear = &Syears([$i]; // are changed to foreach by reference

if (Syear < 2000) Syear += 2000;

Concurrency

PHP arrays can be modified in any ways during iteration without concurrency problems (unlike e.g.
Java ristS). If the array is iterated by reference, later iterations will be affected by changes to the
array. Otherwise, the changes to the array will not affect later iterations (as if you are iterating a
copy of the array instead). Compare looping by value:

Sarray = [0 => 1, 2 => 3, 4 => 5, 6 => 7];
foreach ($array as S$key => Svalue) {
if (Skey === 0) {
Sarray[6] = 17;

unset (Sarray[4]);

}
echo "S$key => S$value\n";

Output:

o N O
I
VvV Vv

I
VvV Vv
~N 0w =

But if the array is iterated with reference,

Sarray = [0 => 1, 2 => 3, 4 => 5, 6 => 7];
foreach ($array as S$key => &S$Svalue) {
if (Skey === 0) {
Sarray[6] = 17;

unset (Sarray[4]);

https://riptutorial.com/ 21

echo "Skey => S$value\n";

Output:

Il
\

o N O
L
Vv Vv
oW e

The key-value set of 4 => 5 is no longer iterated, and ¢ => 7 is changed to 6 => 17.

Using ArrayObject Iterator

Php arrayiterator allows you to modify and unset the values while iterating over arrays and objects.

Example:

Sarray = ['1l' => 'apple', '2' => 'banana', '3' => 'cherry'l];
SarrayObject = new ArrayObject ($array) ;
Siterator = $arrayObject->getlIterator();

for ($iterator; Siterator->valid(); Siterator—->next()) {

echo $iterator->key() . ' => ' . S$iterator->current() . "</br>";
}
Output:
1 => apple

2 => banana
3 => cherry

Read Array iteration online: https://riptutorial.com/php/topic/5727/array-iteration

https://riptutorial.com/

22

https://riptutorial.com/php/topic/5727/array-iteration

C_hapter o: Arrays

Intr

oduction

An array is a data structure that stores an arbitrary number of values in a single value. An array in
PHP is actually an ordered map, where map is a type that associates values to keys.

Syntax

Par

$array = array('Valuel', 'Value2', 'Value3d"); // Keys defaultto 0, 1, 2, ...,

$array = array('Valuel', 'Value2',); // Optional trailing comma

$array = array(‘'keyl' => 'Valuel', 'key2' => 'Value2',); // Explicit keys

$array = array('keyl' => 'Valuel', 'Value2',); // Array (['keyl] => Valuel [1] => 'Value2')
$array = ['keyl' => 'Valuel', 'key2' => 'Value2',]; // PHP 5.4+ shorthand

$array[] = 'ValueX'; // Append 'ValueX' to the end of the array

$array['’keyX'] = 'ValueX'; // Assign 'valueX' to key 'keyX'

$array += ['keyX' =>'valueX', 'keyY' => 'valueY']; // Adding/Overwrite elements on an existing
array

ameters

Key

Value

The key is the unique identifier and index of an array. It may be a string Or an
integer. Therefore, valid keys would be 'foo', '5', 10, 'a2p', ...

For each ey there is a corresponding value (nu11 otherwise and a notice is
emitted upon access). The value has no restrictions on the input type.

Remarks

See also

Manipulating a single array
Executing upon an array

Array iteration

Processing multiple arrays together

Examples

Initializing an Array

https://riptutorial.com/ 23

http://www.riptutorial.com/php/topic/6825/manipulating-an-array
http://www.riptutorial.com/php/topic/6826/executing-upon-an-array
http://www.riptutorial.com/php/topic/5727/array-iteration
http://www.riptutorial.com/php/topic/6827/processing-multiple-arrays-together

An array can be initialized empty:

// An empty array
S$foo = array();

// Shorthand notation available since PHP 5.4
$foo = [];

An array can be initialized and preset with values:

// Creates a simple array with three strings
Sfruit = array('apples', 'pears', 'oranges');

// Shorthand notation available since PHP 5.4
Sfruit = ['apples', 'pears', 'oranges'];

An array can also be initialized with custom indexes (also called an associative array):

// A simple associative array

$fruit = array (
'first' => 'apples',
'second' => 'pears',
'third' => 'oranges'

)i

// Key and value can also be set as follows
Sfruit['first'] = 'apples';

// Shorthand notation available since PHP 5.4

Sfruit = [
'first' => 'apples',
'second' => 'pears',
'third' => 'oranges'

If the variable hasn't been used before, PHP will create it automatically. While convenient, this
might make the code harder to read:

Sfool[] = 1; // Array([0] => 1)
Sbar[]1[] = 2; // Array([0] => Array([0] => 2))

The index will usually continue where you left off. PHP will try to use numeric strings as integers:

$foo = [2 => 'apple', 'melon']; // Array([2] => apple, [3] => melon)
$foo = ['2' => 'apple', 'melon']; // same as above
$foo = [2 => 'apple', 'this is index 3 temporarily', '3' => 'melon']; // same as above! The

last entry will overwrite the second!

https://riptutorial.com/ 24

To initialize an array with fixed size you can use spivixcdarray:

Sarray = new SplFixedArray (3);

Sarray [0

~

Sarray [l

~

Sarray[2

~

I
OV S

]
]
]
]

Sarray[3 ; // RuntimeException

// Increase the size of the array to 10
Sarray—->setSize (10);

Note: An array created using spirixedarray has a reduced memory footprint for large sets of data,
but the keys must be integers.

To initialize an array with a dynamic size but with » non empty elements (e.g. a placeholder) you
can use a loop as follows:

SmyArray = array();
$sizeOfMyArray = 5;
$fill = 'placeholder';

for ($1 = 0; $i < $sizeOfMyArray; S$i++) {

SmyArray[] = $fill;
}

// print_r (SmyArray); results in the following:
// Array ([0] => placeholder [1l] => placeholder [2] => placeholder [3] => placeholder [4] =>
placeholder)

If all your placeholders are the same then you can also create it using the function array ci11():
array array_fill (int $start_index , int $num , mixed $value)
This creates and returns an array with nun entries of vaiue, keys starting at start_index.

Note: If the start_index IS Nnegative it will start with the negative index and continue from 0 for the
following elements.

$a = array_fill (5, 6, 'banana'); // Array ([5] => banana, [6] => banana, ..., [10] => banana)
Sb = array_fill (-2, 4, 'pear'); // Array ([-2] => pear, [0] => pear, ..., [2] => pear)
Conclusion: With =--2y ri11() you are more limited for what you can actually do. The loop is more

flexible and opens you a wider range of opportunities.

Whenever you want an array filled with a range of numbers (e.g. 1-4) you could either append
every single element to an array or use the :-n5= () function:

https://riptutorial.com/ 25

https://secure.php.net/manual/en/class.splfixedarray.php
https://secure.php.net/manual/en/function.array-fill.php
https://secure.php.net/manual/en/function.array-fill.php
https://secure.php.net/manual/en/function.range.php

array range (mixed $start , mixed $end [, number $step=11])

This function creates an array containing a range of elements. The first two parameters are
required, where they set the start and end points of the (inclusive) range. The third parameter is
optional and defines the size of the steps being taken. Creating a range from o to 4 with a stepsize
of 1, the resulting array would consist of the following elements: o, 1, 2, 3, and 4. If the step size is
increased to 2 (i.e. range (0, 4, 2)) then the resulting array would be: o, 2, and 4.

S$array = [];
Sarray_with_range = range(l, 4);

for ($i = 1; $i <= 4; S$i++) {

Sarray[] = $i;
}
print_r(Sarray); // Array ([0] => 1 [1] => 2 [2] => 3 [3] => 4)
print_r ($Sarray_with_range); // Array ([0] => 1 [1] => [2] => [3] => 4)

range Can work with integers, floats, booleans (which become casted to integers), and strings.
Caution should be taken, however, when using floats as arguments due to the floating point
precision problem.

Check if key exists

USe array key exists () OF isset () OF lempty () -

Smap = [
'foo' => 1,
'bar' => null,

'foobar' => '',
17
array_key_exists('foo', S$map); // true
isset ($map['foo']); // true
lempty (Smap['foo']l); // true
array_key_exists('bar', S$map); // true

isset ($map['bar']); // false
lempty ($Smap['bar']); // false

Note that isset () treats a nu11 valued element as non-existent. Whereas 'empty () does the same
for any element that equals ra1se (Using a weak comparision; for example, nu11, '+ and o are all
treated as false by 1empty ()). While isset ($map['foobar']); IS true, lempty ($Smap['foobar']) IS false.
This can lead to mistakes (for example, it is easy to forget that the string 'o' is treated as false) so
use of rempty () is often frowned upon.

Note also that isset () and 1empty () Will work (and return false) if smap is not defined at all. This
makes them somewhat error-prone to use:

// Note "long" vs "lang", a tiny typo in the variable name.
Smy_array_with_a_long_name = ['foo' => true];
array_key_exists('foo', $my_array_with_a_lang _name); // shows a warning

https://riptutorial.com/ 26

http://php.net/manual/en/function.array-key-exists.php

isset (Smy_array_with_a_lang name['foo']); // returns false

You can also check for ordinal arrays:

Sord = ['a', 'b'l; // equivalent to [0 => 'a', 1 => 'b']

array_key_exists (0, $ord); // true
array_key_exists (2, $ord); // false

Note that isset () has better performance than array_xey_exists() as the latter is a function and the
former a language construct.

You can also use xey _exist= (), Which is an alias for array_key_exists ().
Checking if a value exists in array
The function i =2y () returns true if an item exists in an array.

Sfruits = ['banana', 'apple'l]l;

$foo = in_array ('banana', S$fruits);
// S$foo value is true

Sbar = in_array ('orange', S$fruits);
// S$bar value is false

You can also use the function =--=y scarch () to get the key of a specific item in an array.

Suserdb = ['Sandra Shush', 'Stefanie Mcmohn', 'Michael'];
Spos = array_search('Stefanie Mcmohn', $userdb);
if ($Spos !== false) {

echo "Stefanie Mcmohn found at $pos";

}
PHP 5.x5.5
In PHP 5.5 and later you can use =-ray _colunn () IN conjunction with array_search ().

This is particularly useful for checking if a value exists in an associative array:

Suserdb = [
[
"uyid" => '100',
"name" => 'Sandra Shush',
"url" => 'urlofl00',

"uid" => '5465',
"name" => 'Stefanie Mcmohn',
"pic_square" => 'urlofl00',

"uid" => '40489',
"name" => 'Michael',

https://riptutorial.com/ 27

http://php.net/manual/en/function.key-exists.php
http://php.net/manual/en/function.in-array.php
http://php.net/manual/en/function.array-search.php
http://php.net/manual/en/function.array-column.php
http://stackoverflow.com/questions/6990855/php-check-if-value-and-key-exist-in-multidimensional-array/37935356#37935356

"pic_square" => 'urlof40489',
17
Skey = array_search (40489, array_column (Suserdb, 'uid'));
Validating the array type

The function is_2rray () returns true if a variable is an array.

Sinteger = 1337;
Sarray = [1337, 42];

is_array(Sinteger); // false
is_array (Sarray); // true

You can type hint the array type in a function to enforce a parameter type; passing anything else
will result in a fatal error.

function foo (array Sarray) { /* Sarray is an array */ }
You can also use the 4=t ,pe () function.

Sinteger = 1337;

Sarray = [1337, 42];
gettype ($integer) === 'array'; // false
gettype (Sarray) === 'array'; // true

ArrayAccess and lIterator Interfaces

Another useful feature is accessing your custom object collections as arrays in PHP. There are
two interfaces available in PHP (>=5.0.0) core to support this: arrayaccess and rterator. The
former allows you to access your custom objects as array.

ArrayAccess

Assume we have a user class and a database table storing all the users. We would like to create a
UserCollection Class that will:

1. allow us to address certain user by their username unique identifier
2. perform basic (not all CRUD, but at least Create, Retrieve and Delete) operations on our
users collection

Consider the following source (hereinafter we're using short array creation syntax [available
since version 5.4):

class UserCollection implements ArrayAccess {
protected $_conn;

protected $_requiredParams = ['username', 'password',6 'email'];

https://riptutorial.com/ 28

http://php.net/manual/en/function.is-array.php
http://php.net/manual/en/function.gettype.php

public function __construct () {
Sconfig = new Configuration();

SconnectionParams = [
//your connection to the database

17

Sthis—->_conn = DriverManager::getConnection ($connectionParams, S$config);

protected function _getByUsername (Susername) {
Sret = $this->_conn->executeQuery ('SELECT * FROM 'User WHERE ‘username’ IN (?)',
[Susername]
)—>fetch();

return Sret;

// START of methods required by ArrayAccess interface
public function offsetExists (Soffset) {
return (bool) S$this->_getByUsername ($Soffset);

public function offsetGet (Soffset) {
return S$this->_getByUsername (Soffset) ;

public function offsetSet (Soffset, S$value) {
if (!is_array(Svalue)) {
throw new \Exception('value must be an Array');

Spassed = array_intersect (array_values (Sthis—->_requiredParams), array_keys (Svalue));
if (count ($passed) < count ($this->_requiredParams)) {
throw new \Exception('value must contain at least the following params: '

implode(',', $this->_requiredParams)) ;

}

Sthis—->_conn->insert ('User', Svalue);

public function offsetUnset (Soffset) {
if (!is_string(Soffset)) {
throw new \Exception('value must be the username to delete');
}
if (!S$Sthis->offsetGet (Soffset)) {
throw new \Exception ('user not found');

}

Sthis—>_conn->delete ('User', ['username' => Soffset]);

}

// END of methods required by ArrayAccess interface

then we can :
Susers = new UserCollection();
var_dump (empty (Susers|['testuser']), isset (Susers|['testuser']));
Susers['testuser'] = ['username' => 'testuser',

'password' => 'testpassword',

https://riptutorial.com/

29

'email' => 'test@test.com'];

var_dump (empty (Susers|['testuser']), isset (Susers['testuser']), Susers|'testuser']);
unset (Susers|['testuser']);
var_dump (empty (Susers|['testuser']), isset (Susers|'testuser']));

which will output the following, assuming there was no testuser before we launched the code:

bool (true)
bool (false
bool (false
bool (true)
array (17) {

)
)

["username"]=>
string(8) "testuser"
["password"]=>
string(12) "testpassword"
["email"]=>
string(13) "test@test.com"
}
bool (true)
bool (false)

IMPORTANT: offsetExists iS not called when you check existence of a key with array_xey_exists
function. So the following code will output fa1se twice:

var_dump (array_key_exists ('testuser', Susers));

Susers|['testuser'] = ['username' => 'testuser',
'password' => 'testpassword',
'email' => 'test@test.com'];

var_dump (array_key_exists ('testuser', Susers));

lterator

Let's extend our class from above with a few functions from rterator interface to allow iterating
over it with foreach and while.

First, we need to add a property holding our current index of iterator, let's add it to the class
properties as s_position:

// iterator current position, required by Iterator interface methods

protected $_position = 1;
Second, let's add 1terator interface to the list of interfaces being implemented by our class:

class UserCollection implements ArrayAccess, Iterator {

then add the required by the interface functions themselves:

// START of methods required by Iterator interface
public function current () {
return S$this->_getById($this->_position);
}
public function key () {

https://riptutorial.com/

return S$this->_position;
}
public function next () {
Sthis—>_position++;
}
public function rewind () {
Sthis—->_position = 1;
}
public function wvalid () {
return null !== S$this->_getById(S$Sthis->_position);
}
// END of methods required by Iterator interface

So all in all here is complete source of the class implementing both interfaces. Note that this
example is not perfect, because the IDs in the database may not be sequential, but this was
written just to give you the main idea: you can address your objects collections in any possible
way by implementing arrayaccess and rterator interfaces:

class UserCollection implements ArrayAccess, Iterator {
// 1lterator current position, required by Iterator interface methods
protected $_position = 1;

// <add the old methods from the last code snippet here>

// START of methods required by Iterator interface
public function current () {
return $this->_getById($this->_position);
}
public function key () {
return $this->_position;
}
public function next () {
$this—>_position++;
}
public function rewind () {
$this—>_position = 1;
}
public function wvalid () {
return null !== $this->_getById($this->_position);
}
// END of methods required by Iterator interface

and a foreach looping through all user objects:

foreach (Susers as Suser) {
var_dump (Suser['id']);

which will output something like

string(2) "1"
string(2) "2"
string(2) "3"
string(2) "4"

https://riptutorial.com/

31

Creating an array of variables

Susername = 'Hadibut';

Semail = 'hadibut@example.org';

Svariables = compact ('username', 'email');

// $variables is now ['username' => 'Hadibut', 'email' => 'hadibut@example.org']

This method is often used in frameworks to pass an array of variables between two components.

Read Arrays online: https://riptutorial.com/php/topic/204/arrays

https://riptutorial.com/

32

https://riptutorial.com/php/topic/204/arrays

C_hapter 6: Asynchronous programming

Examples

Advantages of Generators

PHP 5.5 introduces Generators and the yield keyword, which allows us to write asynchronous
code that looks more like synchronous code.

The yie1a expression is responsible for giving control back to the calling code and providing a
point of resumption at that place. One can send a value along the yic14 instruction. The return
value of this expression is either nu11 or the value which was passed t0 Generator: :send ().

function reverse_range ($1) {
// the mere presence of the yield keyword in this function makes this a Generator
do {
// $1 is retained between resumptions
print yield $i;
} while (--$1i > 0);

Sgen = reverse_range (5);
print $gen->current () ;
Sgen->send ("injected!"); // send also resumes the Generator

foreach ($gen as $val) { // loops over the Generator, resuming it upon each iteration
echo $val;

}

// Output: S5injected!4321

This mechanism can be used by a coroutine implementation to wait for Awaitables yielded by the

Generator (by registering itself as a callback for resolution) and continue execution of the
Generator as soon as the Awaitable is resolved.

Using Icicle event loop
Icicle uses Awaitables and Generators to create Coroutines.

require __DIR__ . '/vendor/autoload.php';

use Icicle\Awaitable;
use Icicle\Coroutine\Coroutine;

use Icicle\Loop;

$Sgenerator = function (float S$time) {
try {
// Sets S$start to the value returned by microtime () after approx. $time seconds.
Sstart = yield Awaitable\resolve (microtime (true))->delay (Stime) ;
echo "Sleep time: ", microtime (true) - $start, "\n";

https://riptutorial.com/

33

https://github.com/icicleio/icicle

// Throws the exception from the rejected awaitable into the coroutine.
return yield Awaitable\reject (new Exception ('Rejected awaitable'));

} catch (Throwable $e) { // Catches awaitable rejection reason.
echo "Caught exception: ", $e->getMessage(), "\n";

return yield Awaitable\resolve ('Coroutine completed');
}i

// Coroutine sleeps for 1.2 seconds, then will resolve with a string.
Scoroutine = new Coroutine ($generator(1.2));
Scoroutine->done (function (string $data) {
echo $data, "\n";
1)

Loop\run () ;

Using Amp event loop

Amp harnesses Promises [another name for Awaitables] and Generators for coroutine creation.

require __DIR__ . '/vendor/autoload.php';
use Amp\Dns;

// Try our system defined resolver or googles, whichever is fastest
function queryStackOverflow ($Srecordtype) {
Srequests = [
Dns\query ("stackoverflow.com", S$Srecordtype),
Dns\query ("stackoverflow.com", S$recordtype, ["server" => "8.8.8.8"]),
1;
// returns a Promise resolving when the first one of the requests resolves

return yield Amp\first ($request);

\Amp\run (function() { // main loop, implicitly a coroutine
try {
// convert to coroutine with Amp\resolve ()
Spromise = Amp\resolve (queryStackOverflow (Dns\Record: :NS)) ;
list (ns, Stype, S$ttl) = // we need only one NS result, not all
current (yield Amp\timeout ($Spromise, 2000 /* milliseconds */));
echo "The result of the fastest server to reply to our query was $ns";
} catch (Amp\TimeoutException $e) {
echo "We've heard no answer for 2 seconds! Bye!";
} catch (Dns\NoRecordException $e) {
echo "No NS records there? Stupid DNS nameserver!";

)i

Spawning non-blocking processes with proc_open()

PHP has no support for running code concurrently unless you install extensions such as pnreaa.
This can be sometimes bypassed by USing proc_open () and st ream_set_blocking () and reading their
output asynchronously.

If we split code into smaller chunks we can run it as multiple suprocesses. Then using

stream_set_blocking ()

https://riptutorial.com/ 34

https://github.com/amphp/amp/tree/v1.x
http://www.riptutorial.com/php/topic/1583/multi-threading-extension
http://php.net/manual/en/function.proc-open.php
http://php.net/manual/en/function.stream-set-blocking.php
http://php.net/manual/en/function.stream-set-blocking.php

function we can make each subprocess also non-blocking. This means we can spawn multiple
subprocesses and then check for their output in a loop (similarly to an even loop) and wait until all
of them finish.

As an example we can have a small subprocess that just runs a loop and in each iteration sleeps
randomly for 100 - 1000ms (note, the delay is always the same for one subprocess).

<?php

// subprocess.php

Sname = Sargv[1l];

$delay = rand(1l, 10) * 100;

printf ("$name delay: ${delay}ms\n");

for ($i = 0; $i < 5; S$i++) {
usleep ($delay * 1000);
printf ("$Sname: $i\n");

Then the main process will spawn subprocesses and read their output. We can split it into smaller
blocks:

Spawn subprocesses with proc_open() .

Make each subprocess non-blocking with s« rcam set biocking ().

Run a loop until all subprocesses finish using proc cet starus ().

Properly close file handles with the output pipe for each subprocess using 105 () and close
process handles with proc ciose ().

<?php
// non-blocking-proc_open.php
// File descriptors for each subprocess.
Sdescriptors = [
=> ['pipe', 'r'l, // stdin
1 => ['pipe', 'w'], // stdout
1i

Spipes = [];
Sprocesses = [];
foreach (range(l, 3) as $i) {
// Spawn a subprocess.
Sproc = proc_open ('php subprocess.php proc' . $i, $descriptors, S$procPipes);
Sprocesses[$i] = S$proc;
// Make the subprocess non-blocking (only output pipe) .
stream_set_blocking ($SprocPipes[1], 0);
Spipes[$i] = S$procPipes;
t

// Run in a loop until all subprocesses finish.
while (array_filter ($Sprocesses, function ($proc) { return proc_get_status ($proc) ['running'];
1) A
foreach (range(l, 3) as $i) {
usleep (10 * 1000); // 100ms
// Read all available output (unread output is buffered) .
Sstr = fread(Spipes[$i][1], 1024);
if ($str) {
printf ($Sstr);

https://riptutorial.com/ 35

http://php.net/manual/en/function.proc-open.php
http://php.net/manual/en/function.stream-set-blocking.php
http://php.net/manual/en/function.proc-get-status.php
http://php.net/manual/en/function.fclose.php
http://php.net/manual/en/function.proc-close.php

}

// Close all pipes and processes.

foreach (range(l, 3) as $1i) {
fclose ($pipes[$i][1]);
proc_close (Sprocesses[$1]);

The output then contains mixture from all three subprocesses as they we're read by fread() (note,
that in this case proc1 ended much earlier than the other two):

$ php non-blocking-proc_open.php
procl delay: 200ms

proc2 delay: 1000ms

proc3 delay: 800ms

procl:
procl:
procl:
procl:
proc3:
procl:
proc2:
proc3:
proc2:
proc3:
proc2:
proc3:
proc2:
proc3:

B W w DN PR RO R O WwWN PR O

proc2:

Reading serial port with Event and DIO

DIO streams are currently not recognized by the Event extension. There is no clean way to obtain
the file descriptor encapsulated into the DIO resource. But there is a workaround:

» open stream for the port with fopen () ;

» make the stream non-blocking with st rcam set biocking ()

» obtain numeric file descriptor from the stream with rvencutii::getsockerra();

* pass the numeric file descriptor to dio_rfdopen () (currently undocumented) and get the DIO
resource;

» add an event With a callback for listening to the read events on the file descriptor;
« in the callback drain the available data and process it according to the logic of your
application.

dio.php

<?php

class Scanner {
protected $port; // port path, e.g. /dev/pts/5
protected $fd; // numeric file descriptor
protected S$base; // EventBase
protected $dio; // dio resource

https://riptutorial.com/ 36

http://php.net/manual/en/function.fread.php
http://php.net/manual/en/book.dio.php
http://php.net/manual/en/book.event.php
http://php.net/manual/en/function.stream-set-blocking.php
http://php.net/manual/en/function.stream-set-blocking.php

// Event
// Event

protected $e_open;
protected $e_read;

public function __construct
Sthis->port = Sport;

(Sport) {

Sthis—->base = new EventBase () ;

public function __destruct ()
Sthis—>base->exit ();

if ($Sthis->e_open)
Sthis->e_open->free();

if ($this—->e_read)
Sthis—>e_read->free();

if ($Sthis->dio)
dio_close ($Sthis->dio);

public function run() {

Sstream = fopen ($this->port,
stream_set_pblocking($stream,

{

'rb');
false);

Sthis->fd = EventUtil::getSocketFd ($stream);

if (Sthis->fd < 0) {
fprintf (STDERR,
return;

Sthis->e_open = new Event ($this->base,

Sthis->e_open->add() ;
Sthis->base->dispatch () ;

fclose ($stream) ;

public function _onOpen ($fd,
Sthis->e_open->del () ;

"Failed attach to port,

events:

Sevents) {

Sthis->dio = dio_fdopen ($this->fd) ;

// Call other dio functions here,

dio_tcsetattr ($Sthis-—>dio,

'baud' => 9600,
'bits' => 8§,
'stop' => 1,
'parity' => 0

1)

Sthis—->e_read = new Event ($Sthis->base,

[$this, '_onRead']);
Sthis->e_read->add () ;

public function _onRead ($fd,
while
var_dump ($Sdata) ;

// Change the port argument

e.g.
[

Sevents) {

(Sdata = dio_read(S$Sthis->dio, 1)) {

%d\n",

Sevents) ;

Sthis->fd, Event::WRITE,

Sthis->fd, Event::READ |

[Sthis, '_onOpen']);

Event: :PERSIST,

https://riptutorial.com/

37

Sscanner = new Scanner ('/dev/pts/5');

Sscanner—->run () ;

Testing

Run the following command in terminal A:

$ socat -d -d pty,raw,echo=0 pty,raw,echo=0

2016/12/01 18:04:06 socat[16750] N PTY is /dev/pts/5

2016/12/01 18:04:06 socat[16750] N PTY is /dev/pts/8

2016/12/01 18:04:06 socat[16750] N starting data transfer loop with FDs [5,5] and [7,7]

The output may be different. Use the PTYs from the first couple of rows (/dev/pts/5 and /dev/pts/8

, In particular).

In terminal B run the above-mentioned script. You may need root privileges:
$ sudo php dio.php

In terminal C send a string to the first PTY:

$ echo test > /dev/pts/8

Output

string(l) "t"
string(l) "e"

(

(
string (1) "s"
string (1) "t"
(

string(1l) "

"

HTTP Client Based on Event Extension

This is a sample HTTP client class based on Event extension.

The class allows to schedule a number of HTTP requests, then run them asynchronously.

http-client.php

<?php
class MyHttpClient {
/// @var EventBase
protected S$base;
/// @var array Instances of EventHttpConnection
protected $connections = [];

public function __construct () {
$this->base = new EventBase();

https://riptutorial.com/

38

https://pecl.php.net/package/event

/**
* Dispatches all pending requests (events)
*
* @return void
=/

public function run() {
Sthis->base->dispatch () ;

public function __ _destruct () {
// Destroy connection objects explicitly, don't wait for GC.
// Otherwise, EventBase may be free'd earlier.
Sthis->connections = null;

/**
* @brief Adds a pending HTTP request

* @param string $address Hostname, or IP

* @param int S$port Port number

* @param array Sheaders Extra HTTP headers

* @param int $cmd A EventHttpRequest::CMD_* constant

* @param string S$resource HTTP request resource, e.g. '/page?a=b&c=d'

*

* @return EventHttpRequest|false

=/
public function addRequest ($Saddress, Sport, array S$Sheaders,
Scmd = EventHttpRequest::CMD_GET, S$Sresource = '/'")

Sconn = new EventHttpConnection ($this->base, null, S$address, $port);
Sconn—->setTimeout (5) ;

Sreq = new EventHttpRequest ([$this, '_requestHandler'], S$this->base);

foreach (Sheaders as $k => Sv) {
Sreg->addHeader ($k, $v, EventHttpRequest::OUTPUT_HEADER) ;
}
Sreg->addHeader ('Host', $address, EventHttpRequest::OUTPUT_HEADER) ;

Sreg->addHeader ('Connection', 'close', EventHttpRequest::OUTPUT_HEADER) ;

if ($conn->makeRequest ($req, cmd, Sresource)) {
Sthis—->connections []= $conn;
return S$req;

return false;

* @brief Handles an HTTP request

* (@param EventHttpRequest Sreq
* @param mixed Sunused
*
* @return void
=/
public function _requestHandler ($req, Sunused) {
if (is_null ($req)) {
echo "Timed out\n";

https://riptutorial.com/

39

} else {
Sresponse_code = S$reg->getResponseCode () ;

if (Sresponse_code == 0) {
echo "Connection refused\n";
} elseif (Sresponse_code != 200) {

echo "Unexpected response: S$response_code\n";

} else {
echo "Success: S$response_code\n";
Sbuf = $reg->getInputBuffer();
echo "Body:\n";

while ($s = Sbuf->readLine (EventBuffer::EOL_ANY)) {

echo $s, PHP_EOL;

Saddress = "my-host.local";
Sport = 80;
Sheaders = ['User—-Agent' => 'My-User—-Agent/1.0', 1;

Sclient = new MyHttpClient ();
// Add pending requests
for ($i = 0; $i < 10; S$Si++) {

Sclient->addRequest ($address, S$port, Sheaders,
EventHttpRequest::CMD_GET, '/test.php?a=' . $i);

// Dispatch pending requests
Sclient—->run () ;

test.php

This is a sample script on the server side.

<?php
echo 'GET: ', var_export ($_GET, true), PHP_EOL;
echo 'User—-Agent: ', S$S_SERVER['HTTP_USER_AGENT'] ?2?

Usage
php http-client.php

Sample Output

Success: 200
Body:
GET: array (
'a' => '1"',
)
User—Agent: My-User—-Agent/1.0

' (none) ', PHP_EOL;

https://riptutorial.com/

Success: 200
Body:
GET: array (
'a' => '0"',
)
User—Agent: My-User—-Agent/1.0
Success: 200
Body:
GET: array (
'a' => '3"',

(Trimmed.)

Note, the code is designed for long-term processing in the CLI SAPI.
HTTP Client Based on Ev Extension

This is a sample HTTP client based on Ev extension.

Ev extension implements a simple yet powerful general purpose event loop. It doesn't provide
network-specific watchers, but its /0O watcher can be used for asynchronous processing of
sockets.

The following code shows how HTTP requests can be scheduled for parallel processing.

http-client.php

<?php
class MyHttpRequest {
/// @var MyHttpClient
private S$http_client;
/// @var string
private $address;
/// @var string HTTP resource such as /page?get=param
private S$resource;
/// @var string HTTP method such as GET, POST etc.
private S$method;
/// @var int
private $service_port;
/// @var resource Socket
private $socket;
/// @var double Connection timeout in seconds.
private $timeout = 10.;
/// @var int Chunk size in bytes for socket_recv ()
private $chunk_size = 20;
/// @var EvTimer
private $timeout_watcher;
/// @var EvIo
private $write_watcher;
/// @var EvIo
private S$read_watcher;
/// @var EvTimer
private $conn_watcher;

https://riptutorial.com/

http://php.net/manual/en/features.commandline.introduction.php
https://pecl.php.net/package/ev
http://docs.php.net/manual/en/class.evio.php
http://docs.php.net/manual/en/book.sockets.php

/// @var string buffer for incoming data
private S$buffer;
/// @var array errors reported by sockets extension in non-blocking mode.
private static $e_nonblocking = [
11, // EAGAIN or EWOULDBLOCK
115, // EINPROGRESS

* @param MyHttpClient S$client
* @param string S$host Hostname, e.g. google.co.uk
* @param string S$resource HTTP resource, e.g. /page?a=b&c=d
* @param string $method HTTP method: GET, HEAD, POST, PUT etc.
* @throws RuntimeException
=/
public function __ construct (MyHttpClient $client, S$host, S$Sresource, S$method)
Sthis->http_client = $client;
Sthis->host Shost;
Sthis->resource = Sresource;
Sthis->method Smethod;

// Get the port for the WWW service
Sthis->service_port = getservbyname ('www', 'tcp');

// Get the IP address for the target host
Sthis->address = gethostbyname ($this->host);

// Create a TCP/IP socket
Sthis—->socket = socket_create (AF_INET, SOCK_STREAM, SOL_TCP);
if (!S$Sthis->socket) {
throw new RuntimeException ("socket_create() failed: reason: "
socket_strerror (socket_last_error()));

// Set O_NONBLOCK flag
socket_set_nonblock ($this—->socket) ;
Sthis->conn_watcher = $this->http_client->getLoop ()

—>timer (0, 0., [$this, 'connect']);

public function __destruct () {
Sthis—->close () ;

private function freeWatcher (&$w)

if (Sw) {
Sw—>stop () ;
Sw = null;
}
}
/**
* Deallocates all resources of the request
=/
private function close() {

if ($Sthis->socket) {
socket_close ($Sthis—>socket) ;
Sthis->socket = null;

https://riptutorial.com/

42

Sthis—->freeWatcher (Sthis->timeout_watcher);
Sthis->freeWatcher
Sthis->freeWatcher
Sthis—>freeWatcher (Sthis—->conn_watcher) ;

Sthis->read_watcher) ;
Sthis->write_watcher);

(
(
(
(

/**
* Initializes a connection on socket
* @return bool
=/
public function connect () {
Sloop = $this->http_client->getLoop () ;

Sthis->timeout_watcher = S$loop->timer ($this->timeout, 0., [$this,
Sthis->write_watcher = $loop->io($this->socket, Ev::WRITE, [S$this,

' _onTimeout'])
'_onWritable']);

return socket_connect ($this->socket, $this->address, S$this->service_port);

/**
* Callback for timeout (EvTimer) watcher
v

public function _onTimeout (EvTimer S$w) {
Sw—>stop () ;
Sthis—->close () ;

/**
* Callback which is called when the socket becomes wriable
=/

public function _onWritable (EvIo $w) {
Sthis->timeout_watcher->stop () ;
Sw—>stop () ;

$in = implode ("\r\n", [
"{$this->method} {S$this->resource} HTTP/1.1",
"Host: {S$this->host}",
'Connection: Close',

1) . "\r\n\r\n";

if (!socket_write (Sthis—->socket, $in, strlen($in))) {
trigger_error ("Failed writing $in to socket", E_USER_ERROR) ;

return;

Sloop = $this->http_client->getLoop () ;
Sthis->read_watcher = $loop->io($this->socket,
Ev::READ, [S$this, '_onReadable']);

// Continue running the loop
Sloop—>run () ;

/**
* Callback which is called when the socket becomes readable
#
public function _onReadable (EvIo $w) {
// recv() 20 bytes in non-blocking mode
Sret = socket_recv($this->socket, S$out, 20, MSG_DONTWAIT) ;

if (Sret) {

https://riptutorial.com/

// Still have data to read. Append the read chunk to

Sthis->buffer .= S$out;
} elseif ($ret === 0) {
// All is read

printf ("\n<<<<\n%s\n>>>>", rtrim(Sthis->buffer));

fflush (STDOUT) ;
Sw—>stop () ;
Sthis—->close () ;
return;

// Caught EINPROGRESS, EAGAIN, or EWOULDBLOCK

the buffer.

if (in_array (socket_last_error (), static::S$e_nonblocking)) {

return;

Sw—>stop () ;
Sthis—->close () ;

L1170 777 7777777777 7777777777777777777
class MyHttpClient {
/// @var array Instances of MyHttpRequest
private S$requests = [];
/// @var EvLoop
private $loop;

public function __construct () {
// Each HTTP client runs its own event loop
Sthis->loop = new EvLoop();

public function __destruct () {
Sthis->loop->stop();

/*'k
* @return EvLoop
v

public function getLoop () {
return $this->loop;

/*'k
* Adds a pending request
v

public function addRequest (MyHttpRequest S$r)
Sthis->requests []= S$r;

/**
* Dispatches all pending requests
v

public function run() {
Sthis->loop->run () ;

LITTTTT 107777707007 777777777777777777

https://riptutorial.com/

44

// Usage
Sclient = new MyHttpClient ();
foreach (range(l, 10) as $i) {
Sclient->addRequest (new MyHttpRequest ($client, 'my-host.local', '/test.php?a=' . $i,
'GET'")) ;
}

Sclient->run();

Testing

SUpPPOSE http://my-host.local/test.php SCIPL s printing the dump of s_cer:

<?php
echo 'GET: ', var_export ($_GET, true), PHP_EOL;

Then the output of php http-client.php cOmmand will be similar to the following:

<<<<

HTTP/1.1 200 OK

Server: nginx/1.10.1

Date: Fri, 02 Dec 2016 12:39:54 GMT
Content-Type: text/html; charset=UTF-8
Transfer-Encoding: chunked

Connection: close

X-Powered-By: PHP/7.0.13-pl0O-gentoo

1d
GET: array (
ra' o => |3|,

0

>>>>

<<<<

HTITP/1.1 200 OK

Server: nginx/1.10.1

Date: Fri, 02 Dec 2016 12:39:54 GMT
Content-Type: text/html; charset=UTF-8
Transfer-Encoding: chunked

Connection: close

X-Powered-By: PHP/7.0.13-pl0O-gentoo

1d
GET: array (
ra' => |2|,

>>>>
(trimmed)

Note, in PHP 5 the sockets extension may log warnings for ernerocress, EAGATN, aNd EWOULDBLOCK
errno vValues. It is possible to turn off the logs with

https://riptutorial.com/

45

error_reporting (E_ERROR) ;

Read Asynchronous programming online: https://riptutorial.com/php/topic/4321/asynchronous-
programming

https://riptutorial.com/

46

https://riptutorial.com/php/topic/4321/asynchronous-programming
https://riptutorial.com/php/topic/4321/asynchronous-programming

C_hapter /. Autoloading Primer

Syntax

e require
* spl_autoload_require

Remarks

Autoloading, as part of a framework strategy, eases the amount of boilerplate code you have to
write.

Examples
Inline class definition, no loading required

// zoo.php
class Animal {
public function eats ($food) {
echo "Yum, S$food!";
}
}

$animal = new Animal () ;
$Sanimal->eats ('meat');

PHP knows what anima1 is before executing new 2anima1, because PHP reads source files top-to-
bottom. But what if we wanted to create new Animals in many places, not just in the source file
where it's defined? To do that, we need to load the class definition.

Manual class loading with require

// Animal.php
class Animal {
public function eats ($food) {
echo "Yum, $food!";
}
}

// zoo.php

require 'Animal.php';
$Sanimal = new Animal;
Sanimal->eats ('slop');

// aquarium.php

require 'Animal.php';
Sanimal = new Animal;
Sanimal->eats ('shrimp"');

https://riptutorial.com/

Here we have three files. One file ("Animal.php") defines the class. This file has no side effects
besides defining the class and neatly keeps all the knowledge about an "Animal” in one place. It's
easily version controlled. It's easily reused.

Two files consume the "Animal.php" file by manually require-ing the file. Again, PHP reads source
files top-to-bottom, so the require goes and finds the "Animal.php" file and makes the anima1 class
definition available before calling new animai.

Now imagine we had dozens or hundreds of cases where we wanted to perform new anima1. That
would require (pun-intended) many, many require Statements that are very tedious to code.

Autoloading replaces manual class definition loading

// autoload.php

spl_autoload_register (function ($class) {
require_once "$class.php";

}) i

// Animal .php
class Animal {
public function eats ($food) {
echo "Yum, $food!";

}
}

// zoo.php

require 'autoload.php';
$animal = new Animal;
Sanimal->eats ('slop');

// aquarium.php

require 'autoload.php';
$animal = new Animal;
Sanimal->eats ('shrimp"');

Compare this to the other examples. Notice hOw require "animal.php" Was replaced with require
"autoload.php". We're still including an external file at run-time, but rather than including a specific
class definition we're including logic that can include any class. It's a level of indirection that eases
our development. Instead of writing one require for every class we need, we write one require for
all classes. We can replace N require With 1 require.

The magic happens with spl_autoload register. This PHP function takes a closure and adds the
closure to a queue of closures. When PHP encounters a class for which it has no definition, PHP
hands the class hame to each closure in the queue. If the class exists after calling a closure, PHP
returns to its previous business. If the class fails to exist after trying the entire queue, PHP crashes
with "Class 'Whatever' not found."

Autoloading as part of a framework solution

// autoload.php
spl_autoload_register (function ($class) {
require_once "S$class.php";

https://riptutorial.com/ 48

http://php.net/manual/en/function.spl-autoload-register.php

P

// Animal .php
class Animal {
public function eats ($food) {
echo "Yum, $food!";
}
}

// Ruminant.php
class Ruminant extends Animal {
public function eats ($food) {
if ('grass' === S$food) {
parent::eats (S$food);
} else {
echo "Yuck, S$food!";

}

// Cow.php
class Cow extends Ruminant ({

}

// pasture.php

require 'autoload.php';
Sanimal = new Cow;
Sanimal->eats ('grass');

Thanks to our generic autoloader, we have access to any class that follows our autoloader naming
convention. In this example, our convention is simple: the desired class must have a file in the
same directory named for the class and ending in ".php". Notice that the class nhame exactly
matches the file name.

Without autoloading, we would have to manually require base classes. If we built an entire zoo of
animals, we'd have thousands of require statements that could more easily be replaced with a
single autoloader.

In the final analysis, PHP autoloading is a mechanism to help you write less mechanical code so
you can focus on solving business problems. All you have to do is define a strategy that maps
class name to file name. You can roll your own autoloading strategy, as done here. Or, you can
use any of the standard ones the PHP community has adopted: PSR-0 or PSR-4. Or, you can use
composer to generically define and manage these dependencies.

Autoloading with Composer

Composer generates a vendor/autoload.php file.

You might simply include this file and you will get autoloading for free.

require __DIR__ . '/vendor/autoload.php';

This makes working with third-party dependencies very easy.

https://riptutorial.com/ 49

http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-4/
http://www.getcomposer.org/

You can also add your own code to the Autoloader by adding an autoload section to your

composer. json.

"autoload": {
"psr—-4": {"YourApplicationNamespace\\": "src/"}

In this section you define the autoload mappings. In this example its a PSR-4 mapping of a
namespace to a directory: the /src directory resides in your projects root folder, on the same level
as the /vendor directory is. An example filename would be src/roo.php CONtaining an

YourApplicationNamespace\Foo(ﬂaSS.

Important: After adding new entries to the autoload section, you have to re-run the command
dump-autoload tO re-generate and update the vendor/autoload.php file with the new information.

In addition to rsr-4 autoloading, Composer also supports psr-0, classmap and files autoloading.
See the autoload reference for more information.

When you including the /vendor/autoload.php file it will return an instance of the Composer
Autoloader. You might store the return value of the include call in a variable and add more
namespaces. This can be useful for autoloading classes in a test suite, for example.

$loader = require __DIR__ . '/vendor/autoload.php';
$loader->add ('Application\\Test\\', __DIR_);

Read Autoloading Primer online: https://riptutorial.com/php/topic/388/autoloading-primer

https://riptutorial.com/ 50

http://www.php-fig.org/psr/psr-4/
https://getcomposer.org/doc/03-cli.md#dump-autoload
https://getcomposer.org/doc/04-schema.md#autoload
https://riptutorial.com/php/topic/388/autoloading-primer

Introduction

The Binary Calculator can be used to calculate with numbers of any size and precision up to
2147483647-1 decimals, in string format. The Binary Calculator is more precise than the float
calculation of PHP.

Syntax

 string bcadd (string $left_operand , string $right_operand [, int $scale =01])

* int bccomp (string $left_operand , string $right_operand [, int $scale =01])

* string bediv (string $left_operand , string $right_operand [, int $scale =0])

* string bcmod (string $left_operand , string $modulus)

« string bcmul (string $left_operand , string $right_operand [, int $scale =01])

* string bcpowmod (string $left_operand , string $right_operand , string $modulus [, int $scale
=0])

* bool bescale (int $scale)

* string besqrt (string $operand [, int $scale =01])

« string bcsub (string $left_operand , string $right_operand [, int $scale =01])

Parameters

Add two arbitrary precision numbers.

left_operand The left operand, as a string.
right_operand The right operand, as a string.

A optional parameter to set the number of digits after the decimal place in the
result.

scale

bccomp Compare two arbitrary precision numbers.
left_operand The left operand, as a string.
right_operand The right operand, as a string.

A optional parameter to set the number of digits after the decimal place which
will be used in the comparison.

scale
bcdiv Divide two arbitrary precision numbers.
left_operand The left operand, as a string.

right_operand The right operand, as a string.

https://riptutorial.com/ 51

scale

bcmod
left_operand

modulus

bcmul
left_operand

right_operand

scale

bcpow
left_operand

right_operand

scale

bcpowmod

left_operand
right_operand

modulus

scale

bcscale

scale

bcsqrt

operand

scale

Add two arbitrary precision numbers.

A optional parameter to set the number of digits after the decimal place in the
result.

Get modulus of an arbitrary precision number.
The left operand, as a string.

The modulus, as a string.

Multiply two arbitrary precision numbers.

The left operand, as a string.

The right operand, as a string.

A optional parameter to set the number of digits after the decimal place in the
result.

Raise an arbitrary precision number to another.
The left operand, as a string.
The right operand, as a string.

A optional parameter to set the number of digits after the decimal place in the
result.

Raise an arbitrary precision number to another, reduced by a specified
modulus.

The left operand, as a string.
The right operand, as a string.
The modulus, as a string.

A optional parameter to set the number of digits after the decimal place in the
result.

Set default scale parameter for all bc math functions.
The scale factor.

Get the square root of an arbitrary precision number.
The operand, as a string.

A optional parameter to set the number of digits after the decimal place in the
result.

https://riptutorial.com/

52

Add two arbitrary precision numbers.

bcsub Subtract one arbitrary precision number from another.
left_operand The left operand, as a string.
right_operand The right operand, as a string.

A optional parameter to set the number of digits after the decimal place in the
result.

scale

Remarks

For all BC functions, if the sca1e parameter is not set, it defaults to 0, which will make all
operations integer operations.

Examples

Comparison between BCMath and float arithmetic operations

bcadd vs float+float

var_dump ('10"'" + '-9.99'); // £loat (0.0099999999999998)

var_dump (10 + -9.99); // £loat (0.0099999999999998)

var_dump (10.00 + -9.99); // £loat (0.0099999999999998)
(

var_dump (bcadd ('10', '-9.99', 20)); // string(22) "0.01000000000000000000"

b_csub vs float-float

var_dump ('10"'" - '9.99'); // £loat (0.0099999999999998)

var_dump (10 - 9.99); // £loat (0.0099999999999998)

var_dump (10.00 - 9.99); // £loat (0.0099999999999998)
(

var_dump (besub ('10', '9.99', 20)); // string(22) "0.01000000000000000000"

bcmul vs Int*int

var_dump ('5.00"' * '2.00"); // float (10)

var_dump (5.00 * 2.00); // float (10)

var_dump (bcmul ('5.0', '2', 20)); // string(4) "10.0"
var_dump (bcmul ('5.000', '2.00', 20)); // string(8) "10.00000"
var_dump (bcmul ('5', '2', 20)); // string(2) "10"

bcmul vs float*float

https://riptutorial.com/

53

var_dump ('1.6767676767' * '1.6767676767"); // float (2.8115498416259)
var_dump (1.6767676767 * 1.6767676767) ; // float (2.8115498416259)
var_dump (becmul ('1.6767676767"', '1.6767676767"', 20)); // string(22) "2.81154984162591572289"

H:Iiv vs float/float

var_dump ('10' / '3.01"'); // float (3.3222591362126)

var_dump (10 / 3.01); // float (3.3222591362126)

var_dump (10.00 / 3.01); // float (3.3222591362126)
(

var_dump (bcdiv('10', '3.01', 20)); // string(22) "3.32225913621262458471"

Using bcmath to read/write a binary long on 32-bit system

On 32-bit systems, integers greater than ox7rrrrrrr cannot be stored primitively, while integers
between 0x0000000080000000 and ox7rrrrrrrrrrrFFFF CAN be stored primitively on 64-bit systems but
not 32-bit systems (signed 1ong 1ong). HOwever, since 64-bit systems and many other languages
support storing signed long long iNtegers, it is sometimes necessary to store this range of integers
in exact value. There are several ways to do so, such as creating an array with two numbers, or
converting the integer into its decimal human-readable form. This has several advantages, such
as the convenience in presenting to the user, and the ability to manipulate it with bcmath directly.

numbers (both of type string, but one is binary and one is ASCII), but they will always try to cast
the ASCII string into a 32-bit int on 32-bit systems. The following snippet provides an alternative:

/** Use pack ("J") or pack("p") for 64-bit systems */
function writelong(string $ascii) : string {
if (bccomp (Sascii, "O") === -1) { // if S$ascii < 0
// 18446744073709551616 is equal to (1 << 64)
// remember to add the quotes, or the number will be parsed as a float literal
Sascii = bcadd($Sascii, "18446744073709551616");

// "n" is big-endian 16-bit unsigned short. Use "v" for small-endian.
return pack("n", bcmod(bcdiv(Sascii, "281474976710656"), "65536"))
pack ("n", bcmod(bcdiv ($Sascii, "4294967296"), "65536"))
pack ("n", bcdiv($Sascii, "65536"), "65536"))
pack ("n", bcmod($ascii, "65536"));

function readLong(string $binary) : string {

Sresult = "0";

Sresult = bcadd(S$result, unpack("n", substr ($binary, 0, 2)));
Sresult = bcmul ($Sresult, "65536");

Sresult = bcadd(S$result, unpack("n", substr ($binary, 2, 2)));
Sresult = bcmul ($Sresult, "65536");

Sresult = bcadd(S$result, unpack("n", substr ($binary, 4, 2)));
Sresult = bcmul ($Sresult, "65536");

Sresult = bcadd(S$result, unpack("n", substr ($binary, 6, 2)));

// if $binary is a signed long long
// 9223372036854775808 is equal to (1 << 63) (note that this expression actually does not
work even on 64-bit systems)

https://riptutorial.com/ 54

https://php.net/pack
https://php.net/unpack

if (bccomp ($Sresult, "9223372036854775808") !== -1) { // if Sresult >= 9223372036854775807
Sresult = bcsub ($Sresult, "18446744073709551616"); // Sresult —-= (1 << 64)
}

return Sresult;

Read BC Math (Binary Calculator) online: https://riptutorial.com/php/topic/8550/bc-math--binary-
calculator-

https://riptutorial.com/

55

https://riptutorial.com/php/topic/8550/bc-math--binary-calculator-
https://riptutorial.com/php/topic/8550/bc-math--binary-calculator-

C_hapter 9: Cache

Remarks

Installation

You can install memcache using pecl

pecl install memcache

Examples

Caching using memcache

Memcache is a distributed object caching system and uses key-vaiue for storing small data. Before
you start calling vemcache code into PHP, you need to make sure that it is installed. That can be
done using ci1ass_exists method in php. Once it is validated that the module is installed, you start
with connecting to memcache server instance.

if (class_exists ('Memcache')) {

Scache = new Memcache () ;
Scache—->connect ('localhost',11211);
}else {

print "Not connected to cache server";

}

This will validate that Memcache php-drivers are installed and connect to memcache server
instance running on localhost.

Memcache runs as a daemon and is called memcached

In the example above we only connected to a single instance, but you can also connect to multiple
servers using

if (class_exists ('Memcache')) {
Scache = new Memcache () ;
Scache->addServer ('192.168.0.100"',11211);
Scache->addServer ('192.168.0.101"',11211);
}

Note that in this case unlike connect , there wont be any active connection until you try to store or
fetch a value.

In caching there are three important operations that needs to be implemented

1. Store data : Add new data to memcached server
2. Get data : Fetch data from memcached server

https://riptutorial.com/ 56

3. Delete data : Delete already existing data from memcached server

Store data

scache OF memcached class object has a set method that takes in a key,value and time to save the
value for (ttl).

Scache->set ($key, $value, 0, S$ttl);

Here $ttl or time to live is time in seconds that you want memcache to store the pair on server.

Get data

scache OF memcached class object has a get method that takes in a key and returns the
corresponding value.

Svalue = $cache->get (Skey) ;

In case there is no value set for the key it will return null

Delete data

Sometimes you might have the need to delete some cache value.scache Or memcache instance
has a de1ete method that can be used for the same.

Scache->delete ($key) ;

Small scenario for caching

Let us assume a simple blog. It will be having multiple posts on landing page that get fetched from
database with each page load. In order to reduce the sql queries we can use memcached to
cache the posts. Here is a very small implementation

if (class_exists ('Memcache')) {
$Scache = new Memcache () ;
$cache—->connect ('localhost',11211);
if (($data = S$cache->get ('posts')) != null) {

// Cache hit
// Render from cache
} else {
// Cache miss
// Query database and save results to database
// Assuming S$posts 1s array of posts retrieved from database
$Scache->set ('posts', S$posts,0,$ttl);

https://riptutorial.com/ 57

lelse {

die ("Error while connecting to cache server");

Cache Using APC Cache

The Alternative PHP Cache (APC) is a free and open opcode cache for PHP. Its goal is to provide

a free, open, and robust framework for caching and optimizing PHP intermediate code.

installation

sudo apt-get install php-apc

sudo /etc/init.d/apache2 restart

Add Cache:

apc_add (S$key, $value , $ttl);
Skey = unique cache key
Svalue = cache value

$ttl = Time To Live;

Delete Cache:
apc_delete (Skey) ;
Set Cache Example:

if (apc_exists (Skey)) {
echo "Key exists: ";
echo apc_fetch ($key) ;
} else {
echo "Key does not exist";

apc_add (S$key, $value , $ttl);

Performance;

APC is nearly 5 times faster than Memcached.

Read Cache online: https://riptutorial.com/php/topic/5470/cache

https://riptutorial.com/

58

http://php.net/manual/en/apc.installation.php
http://stackoverflow.com/questions/1794342/memcache-vs-apc-for-a-single-server-site-data-caching
https://www.percona.com/blog/2006/09/27/apc-or-memcached/
https://riptutorial.com/php/topic/5470/cache

C_hapter 10: Classes and Objects

Introduction

Classes and Objects are used to to make your code more efficient and less repetitive by grouping
similar tasks.

A class is used to define the actions and data structure used to build objects. The objects are then
built using this predefined structure.

Syntax
® class <ClassName> [extends <ParentClassName>] [implements <Interfacel> [, <Interface2>,
. 1 1 1/l Class declaration
® interface <InterfaceName> [extends <ParentInterfacel> [, <ParentInterface2>, ...] 1 { } ”
Interface declaration
® use <Traitl> [, <Trait2>, ...];NleetraHs
® [public | protected | private] [static] $<varName>; /! Attribute declaration
* const <coNsT_naMe>; // Constant declaration
® [public | protected | private] [static] function <methodName> ([args...]) { }//hﬂGﬂWOd
declaration
Remarks

Classes and Interface components

Classes may have properties, constants and methods.

» Properties hold variables in the scope of the object. They may be initialized on declaration,
but only if they contain a primitive value.

» Constants must be initialized on declaration and can only contain a primitive value.
Constant values are fixed at compile time and may not be assigned at run time.

* Methods must have a body, even an empty one, unless the method is declared abstract.

class Foo {
private $foo = 'foo'; // OK
private Sbaz = array(); // OK
private $bar = new Bar(); // Error!

Interfaces cannot have properties, but may have constants and methods.

* Interface constants must be initialized on declaration and can only contain a primitive value.
Constant values are fixed at compile time and may not be assigned at run time.
* Interface methods have no body.

https://riptutorial.com/ 59

interface FooBar {
const FOO_VALUE = 'bla';
public function doAnything();

Examples

Interfaces

Introduction

Interfaces are definitions of the public APIs classes must implement to satisfy the interface. They
work as "contracts", specifying what a set of subclasses does, but not how they do it.

Interface definition is much alike class definition, changing the keyword ciass t0 interface:

interface Foo {

Interfaces can contain methods and/or constants, but no attributes. Interface constants have the
same restrictions as class constants. Interface methods are implicitly abstract:

interface Foo {
const BAR = 'BAR';

public function doSomething ($Sparaml, S$param?2);

Note: interfaces must not declare constructors or destructors, since these are implementation
details on the class level.

Realization

Any class that needs to implement an interface must do so using the imp1ements keyword. To do
so, the class needs to provide a implementation for every method declared in the interface,
respecting the same signature.

A single class can implement more than one interface at a time.

interface Foo {
public function doSomething ($Sparaml, S$param2);
}

interface Bar {
public function doAnotherThing ($Sparaml);

https://riptutorial.com/

60

class Baz implements Foo, Bar {
public function doSomething ($paraml, S$param2) {
VA

public function doAnotherThing ($paraml) {
/] ...

When abstract classes implement interfaces, they do not need to implement all methods. Any

method not implemented in the base class must then be implemented by the concrete class that

extends it:

abstract class AbstractBaz implements Foo, Bar ({
// Partial implementation of the required interface...
public function doSomething ($Sparaml, S$param2) {
70 ooo
}

class Baz extends AbstractBaz {
public function doAnotherThing ($paraml) {
77 ooo
}

Notice that interface realization is an inherited characteristic. When extending a class that

implements an interface, you do not need to redeclare it in the concrete class, because it is
implicit.

Note: Prior to PHP 5.3.9, a class could not implement two interfaces that specified a
method with the same name, since it would cause ambiguity. More recent versions of
PHP allow this as long as the duplicate methods have the same signature|1].

Like classes, it is possible to establish an inheritance relationship between interfaces, using the
same keyword extends. The main difference is that multiple inheritance is allowed for interfaces:

interface Foo {

interface Bar {

interface Baz extends Foo, Bar {

https://riptutorial.com/

61

http://php.net/manual/en/language.oop5.interfaces.php

Examples

In the example bellow we have a simple example interface for a vehicle. Vehicles can go forwards
and backwards.

interface VehiclelInterface {
public function forward();

public function reverse();

class Bike implements VehicleInterface {
public function forward() {
Sthis->pedal () ;

public function reverse () {
$this->backwardSteps () ;

protected function pedal () {

protected function backwardSteps () {

class Car implements VehicleInterface {
protected $gear = 'N';

public function forward() {

Sthis->setGear (1) ;
$this->pushPedal () ;

public function reverse () {
Sthis->setGear ('R'");
$this->pushPedal () ;

protected function setGear ($gear) {
$Sthis->gear = S$gear;

protected function pushPedal () {

Then we create two classes that implement the interface: Bike and Car. Bike and Car internally

https://riptutorial.com/ 62

are very different, but both are vehicles, and must implement the same public methods that
Vehiclelnterface provides.

Typehinting allows methods and functions to request Interfaces. Let's assume that we have a
parking garage class, which contains vehicles of all kinds.

class ParkingGarage {
protected $vehicles = [];

public function addVehicle (VehicleInterface $vehicle) {
Sthis—->vehicles[] = S$Svehicle;

}

Because addvehicle requires a svehicle Of type vehiclelInterface—nNOt @ concrete
implementation—we can input both Bikes and Cars, which the ParkingGarage can manipulate and
use.

Class Constants

Class constants provide a mechanism for holding fixed values in a program. That is, they provide
a way of giving a name (and associated compile-time checking) to a value like 3.14 Or "app1e".
Class constants can only be defined with the const keyword - the define function cannot be used in
this context.

As an example, it may be convenient to have a shorthand representation for the value of 1t
throughout a program. A class with const values provides a simple way to hold such values.

class MathvValues {
const PI = M_PTI;
const PHI = 1.61803;
}

Sarea = MathValues::PI * Sradius * Sradius;

Class constants may be accessed by using the double colon operator (so-called the scope
resolution operator) on a class, much like static variables. Unlike static variables, however, class
constants have their values fixed at compile time and cannot be reassigned to (e.g. Mathvalues::PT
= 7 would produce a fatal error).

Class constants are also useful for defining things internal to a class that might need changing
later (but do not change frequently enough to warrant storing in, say, a database). We can
reference this internally using the se1r scope resolutor (which works in both instanced and static
implementations)

class Labor {
/** How long, in hours, does it take to build the item? */
const LABOR_UNITS = 0.26;
/** How much are we paying employees per hour? */
const LABOR_COST = 12.75;

https://riptutorial.com/ 63

http://php.net/define

public function getLaborCost ($Snumber_units) {
return (self::LABOR_UNITS * self::LABOR_COST) * S$Snumber_units;

Class constants can only contain scalar values in versions < 5.6

As of PHP 5.6 we can use expressions with constants, meaning math statements and strings with
concatenation are acceptable constants

class Labor {

/** How much are we paying employees per hour? Hourly wages * hours taken to make */
const LABOR_COSTS = 12.75 * 0.26;

public function getLaborCost ($Snumber_units) {
return self::LABOR_COSTS * S$Snumber_units;
t

As of PHP 7.0, constants declared with aerine may now contain arrays.

define ("BAZ", array('baz'));

Class constants are useful for more than just storing mathematical concepts. For example, if

preparing a pie, it might be convenient to have a single rie class capable of taking different kinds
of fruit.

class Pie {
protected S$fruit;

public function __ construct ($fruit) {
$this->fruit = S$fruit;

}

We can then use the rie class like so

Spie = new Pie ("strawberry");

The problem that arises here is, when instantiating the rie class, no guidance is provided as to the
acceptable values. For example, when making a "boysenberry” pie, it might be misspelled
"boisenberry”. Furthermore, we might not support a plum pie. Instead, it would be useful to have a

list of acceptable fruit types already defined somewhere it would make sense to look for them. Say
a class named rruit:

class Fruit {

const APPLE = "apple";
const STRAWBERRY = "strawberry";
const BOYSENBERRY = "boysenberry";

Spie = new Pie (Fruit::STRAWBERRY) ;

https://riptutorial.com/ 64

Listing the acceptable values as class constants provides a valuable hint as to the acceptable
values which a method accepts. It also ensures that misspellings cannot make it past the compiler.
While new pie('aple’) @nd new Pie('apple') are both acceptable to the compiler, new

pie (Fruit::apLE) WIll produce a compiler error.

Finally, using class constants means that the actual value of the constant may be modified in a
single place, and any code using the constant automatically has the effects of the modification.

Whilst the most common method to access a class constant is mMyciass: :consTanT_nave, it may also
be accessed by:

echo MyClass::CONSTANT;

$Sclassname = "MyClass";
echo $classname::CONSTANT; // As of PHP 5.3.0

Class constants in PHP are conventionally named all in uppercase with underscores as word
separators, although any valid label name may be used as a class constant name.

As of PHP 7.1, class constants may now be defined with different visibilities from the default public
scope. This means that both protected and private constants can now be defined to prevent class
constants from unnecessarily leaking into the public scope (see Method and Property Visibility).
For example:

class Something {
const PUBLIC_CONST_A = 1;
public const PUBLIC_CONST_B = 2;
protected const PROTECTED_CONST = 3;
private const PRIVATE_CONST = 4;

define vs class constants

Although this is a valid construction:

function bar() { return 2; };

define ('BAR', bar());

If you try to do the same with class constants, you'll get an error:

function bar () { return 2; };

class Foo {
const BAR = bar(); // Error: Constant expression contains invalid operations

But you can do:

https://riptutorial.com/ 65

http://www.riptutorial.com/php/example/6471/method-and-property-visibility

function bar () { return 2; };
define ('BAR', bar());

class Foo {
const BAR = BAR; // OK

For more information, see constants in the manual.

Using ::class to retrieve class's name

PHP 5.5 introduced the ::c1ass syntax to retrieve the full class name, taking namespace scope
and use Statements into account.

namespace foo;

use bar\Bar;

echo json_encode (Bar::class); // "bar\\Bar"
echo json_encode (Foo::class); // "foo\\Foo"
echo json_encode (\Foo::class); // "Foo"

The above works even if the classes are not even defined (i.e. this code snippet works alone).

This syntax is useful for functions that require a class name. For example, it can be used with
class_exists 0 check a class exists. No errors will be generated regardless of return value in this
snippet:

class_exists (ThisClass\Will\NeverBe\Loaded::class, false);

Late static binding

In PHP 5.3+ and above you can utilize late static binding to control which class a static property or
method is called from. It was added to overcome the problem inherent with the se1£:: scope
resolutor. Take the following code

class Horse {
public static function whatToSay () {
echo 'Neigh!';

public static function speak () {
self::whatToSay () ;

class MrEd extends Horse {
public static function whatToSay () {
echo 'Hello Wilbur!';

https://riptutorial.com/ 66

http://php.net/manual/en/language.constants.php
http://php.net/manual/en/language.oop5.late-static-bindings.php

You would expect that the vrea class will override the parent whatTosay () function. But when we run
this we get something unexpected

Horse: :speak(); // Neigh!
MrEd: :speak(); // Neigh!

The problem is that seif::whatTosay (); can only refer to the norse class, meaning it doesn't obey
vred. If we switch to the static:: scope resolutor, we don't have this problem. This newer method
tells the class to obey the instance calling it. Thus we get the inheritance we're expecting

class Horse {
public static function whatToSay () {
echo 'Neigh!';
}

public static function speak () {
static::whatToSay(); // Late Static Binding
}
}

Horse: :speak(); // Neigh!
MrEd: :speak(); // Hello Wilbur!

Abstract Classes

An abstract class is a class that cannot be instantiated. Abstract classes can define abstract
methods, which are methods without any body, only a definition:

abstract class MyAbstractClass {
abstract public function doSomething($a, $b);
t

Abstract classes should be extended by a child class which can then provide the implementation
of these abstract methods.

The main purpose of a class like this is to provide a kind of template that allows children classes to
inherit from, "forcing” a structure to adhere to. Lets elaborate on this with an example:

In this example we will be implementing a worker interface. First we define the interface:

interface Worker ({
public function run();

}

To ease the development of further Worker implementations, we will create an abstract worker
class that already provides the run () method from the interface, but specifies some abstract
methods that need to be filled in by any child class:

abstract class AbstractWorker implements Worker ({
protected $pdo;
protected $logger;

https://riptutorial.com/ 67

public function __construct (PDO $pdo, Logger $logger) {
Sthis->pdo = $pdo;
Sthis->logger = $logger;

public function run() {

try {
Sthis->setMemoryLimit ($this->getMemoryLimit ()) ;
Sthis->logger->log ("Preparing main");
Sthis->prepareMain () ;
Sthis->logger—->log ("Executing main");
Sthis->main () ;

} catch (Throwable $e) {
// Catch and rethrow all errors so they can be logged by the worker
Sthis->logger->log ("Worker failed with exception: {$Se->getMessage()}");
throw $e;

private function setMemoryLimit ($memoryLimit) {
ini_set ('memory_limit', S$memoryLimit);
Sthis->logger->log("Set memory limit to S$memoryLimit");

abstract protected function getMemoryLimit ();

abstract protected function prepareMain();

abstract protected function main();

First of all, we have provided an abstract method getMemoryrimit (). Any class extending from
AbstractWorker NEeds to provide this method and return its memory limit. The abstractworker then
sets the memory limit and logs it.

Secondly the apstractuworker calls the preparemain () and main () methods, after logging that they
have been called.

Finally, all of these method calls have been grouped in a try-catch block. So if any of the abstract
methods defined by the child class throws an exception, we will catch that exception, log it and
rethrow it. This prevents all child classes from having to implement this themselves.

Now lets define a child class that extends from the abstractworker:

class TranscactionProcessorWorker extends AbstractWorker {
private S$transactions;

protected function getMemoryLimit () {
return "512M";

protected function prepareMain () {
$stmt = S$this->pdo->query ("SELECT * FROM transactions WHERE processed = 0 LIMIT 500");
Sstmt->execute () ;
Sthis->transactions = $stmt->fetchAll ();

https://riptutorial.com/ 68

protected function main () {
foreach (Sthis->transactions as S$transaction) {
// Could throw some PDO or MYSQL exception, but that is handled by the
AbstractWorker

Sstmt = $this->pdo->query ("UPDATE transactions SET processed = 1 WHERE id =
{$transaction['id']} LIMIT 1");
Sstmt->execute () ;

}

As you can see, the transactionprocessoriiorker Was rather easy to implement, as we only had to
specify the memory limit and worry about the actual actions that it needed to perform. No error
handling is needed in the TransactionProcessoriorker because that is handled in the apsractworker.

Important Note

When inheriting from an abstract class, all methods marked abstract in the parent's
class declaration must be defined by the child (or the child itself must also be marked
abstract); additionally, these methods must be defined with the same (or a less
restricted) visibility. For example, if the abstract method is defined as protected, the
function implementation must be defined as either protected or public, but not private.

Taken from the PHP Documentation for Class Abstraction.

If you do not define the parent abstract classes methods within the child class, you will be thrown
a Fatal PHP Error like the following.

Fatal error: Class X contains 1 abstract method and must therefore be declared
abstract or implement the remaining methods (X::x) in

Namespacing and Autoloading

Technically, autoloading works by executing a callback when a PHP class is required but not
found. Such callbacks usually attempt to load these classes.

Generally, autoloading can be understood as the attempt to load PHP files (especially PHP class
files, where a PHP source file is dedicated for a specific class) from appropriate paths according to
the class's fully-qualified name (FQN) when a class is needed.

Suppose we have these classes:

Class file for application\controllers\Base.

<?php
namespace application\controllers { class Base {...} }

Class file for application\controllers\Control.

https://riptutorial.com/ 69

http://php.net/manual/en/language.oop5.abstract.php

<?php
namespace application\controllers { class Control {...} }

Class file for application\models\Page.

<?php
namespace application\models { class Page {...} }

Under the source folder, these classes should be placed at the paths as their FQNs respectively:

» Source folder
© applications
controllers
Base.php
© Control.php
> models
© Page.php

This approach makes it possible to programmatically resolve the class file path according to the
FQN, using this function:

function getClassPath(string S$sourceFolder, string S$SclassName, string S$extension = ".php") {
return $sourceFolder . "/" . str_replace("\\", "/", S$className) . S$extension; // note that
"/" works as a directory separator even on Windows

}

The sp1_autoload_register function allows us to load a class when needed using a user-defined
function:

const SOURCE_FOLDER = _ DIR . "/src";

spl_autoload_register (function (string S$className) {
Sfile = getClassPath (SOURCE_FOLDER, $className) ;
if (is_readable($file)) require_once $file;

1)

This function can be further extended to use fallback methods of loading:

const SOURCE_FOLDERS = [_ DIR

"/src", "/root/src"l);
spl_autoload_register (function (string S$className) {
foreach (SOURCE_FOLDERS as S$folder) {
Sextensions = [
// do we have src/Foo/Bar.php5_int64?
" . php" . PHP_MAJOR_VERSION . "_int" . (PHP_INT_SIZE * 8),
// do we have src/Foo/Bar.php7?
" .php" . PHP_MAJOR_VERSION,
// do we have src/Foo/Bar.php_int647?
".php" . "_int" . (PHP_INT_SIZE * 8),
// do we have src/Foo/Bar.phps?
A\l . phps A\l
// do we have src/Foo/Bar.php?
A\l . php A
1;
foreach (Sextensions as S$ext) {
Spath = getClassPath ($folder, $className, S$extension);
if (is_readable ($path)) return $path;

https://riptutorial.com/ 70

P

Note that PHP doesn't attempt to load the classes whenever a file that uses this class is loaded. It
may be loaded in the middle of a script, or even in shutdown functions . This is one of the reasons

why developers, especially those who use autoloading, should avoid replacing executing source

files in the runtime, especially in phar files.

Dynamic Binding

Dynamic binding, also referred as method overriding is an example of run time polymorphism
that occurs when multiple classes contain different implementations of the same method, but the

object that the method will be called on is unknown until run time.

This is useful if a certain condition dictates which class will be used to perform an action, where
the action is named the same in both classes.

interface Animal {
public function makeNoise();

class Cat implements Animal {
public function makeNoise
{

Sthis—->meow () ;

class Dog implements Animal {
public function makeNoise {
Sthis->bark () ;
}

class Person {
const CAT
const DOG

'cat';

'dog';

private S$petPreference;
private S$pet;

public function isCatLover(): bool {

return $this->petPreference == self::CAT;

}

public function isDogLover (): bool {

return $this->petPreference == self::DOG;

}

public function setPet (Animal $pet) {
Sthis->pet = S$pet;
}

https://riptutorial.com/

71

public function getPet (): Animal {
return S$this->pet;
}
}

if (Sperson->isCatLover ()) {
Sperson->setPet (new Cat ());

} else if ($person->isDogLover ()) {
Sperson—->setPet (new Dog());

}

Sperson—->getPet () —>makeNoise () ;

In the above example, the anima1 class (pog|cat) which will makenoise is unknown until run time
depending on the property within the user class.

Method and Property Visibility

There are three visibility types that you can apply to methods (class/object functions) and
properties (class/object variables) within a class, which provide access control for the method or
property to which they are applied.

You can read extensively about these in the PHP Documentation for OOP Visibility.

Public

Declaring a method or a property as puob1ic allows the method or property to be accessed by:

* The class that declared it.
* The classes that extend the declared class.
* Any external objects, classes, or code outside the class hierarchy.

An example of this puvb1ic access would be:

class MyClass {
// Property
public $myProperty = 'test';

// Method
public function myMethod () {
return $this->myProperty;
}
}

$obj = new MyClass();
echo $obj->myMethod () ;
// Out: test

echo $obj->myProperty;
// Out: test

https://riptutorial.com/

72

http://php.net/manual/en/language.oop5.visibility.php

Protected

Declaring a method or a property as protected allows the method or property to be accessed by:

* The class that declared it.
* The classes that extend the declared class.

This does not allow external objects, classes, or code outside the class hierarchy to access these
methods or properties. If something using this method/property does not have access to it, it will
not be available, and an error will be thrown. Only instances of the declared self (or subclasses
thereof) have access to it.

An example of this protected access would be:

class MyClass {
protected $myProperty = 'test';

protected function myMethod () {
return $this->myProperty;
}

class MySubClass extends MyClass {
public function run() {
echo $this->myMethod() ;
}
}

$obj = new MySubClass () ;
Sobj->run(); // This will call MyClass::myMethod () ;
// Out: test

Sobj->myMethod(); // This will fail.
// Out: Fatal error: Call to protected method MyClass::myMethod() from context ''

The example above notes that you can only access the protected elements within it's own scope. Essentially:
"What's in the house can only be access from inside the house."

Private

Declaring a method or a property as private allows the method or property to be accessed by:
» The class that declared it Only (not subclasses).
A private method or property is only visible and accessible within the class that created it.

Note that objects of the same type will have access to each others private and protected members
even though they are not the same instances.

class MyClass {

https://riptutorial.com/ 73

private S$myProperty = 'test';

private function myPrivateMethod () {
return $this->myProperty;

public function myPublicMethod () {
return S$this->myPrivateMethod() ;

public function modifyPrivatePropertyOf (MyClass S$anotherInstance) {
SanotherInstance->myProperty = "new value";

class MySubClass extends MyClass {
public function run() {
echo $this->myPublicMethod() ;

public function runWithPrivate () {
echo $this->myPrivateMethod () ;

$obj = new MySubClass () ;
$newObj = new MySubClass () ;

// This will call MyClass::myPublicMethod (), which will then call
// MyClass::myPrivateMethod () ;

Sobj—>run () ;

// Out: test

Sobj->modifyPrivatePropertyOf ($newObj) ;

SnewObj->run () ;
// Out: new value

echo $obj->myPrivateMethod(); // This will fail.
// Out: Fatal error: Call to private method MyClass::myPrivateMethod () from context ''

echo $obj->runWithPrivate(); // This will also fail.

// Out: Fatal error: Call to private method MyClass::myPrivateMethod () from context
'MySubClass'

As noted, you can only access the private method/property from within it's defined class.

Calling a parent constructor when instantiating a child

A common pitfall of child classes is that, if your parent and child both contain a constructor(
__construct ()) method, only the child class constructor will run. There may be occasions

where you need to run the parent _ construct () method from it's child. If you need to do that, then

you will need to use the par<nt : : SCOpe resolutor:

parent::__ _construct ();

https://riptutorial.com/

74

http://php.net/manual/en/keyword.parent.php

Now harnessing that within a real-world situation would look something like:

class Foo {

function __construct ($args) {
echo 'parent';

class Bar extends Foo {

function __construct ($args) {
parent::__ _construct ($Sargs) ;

The above will run the parent __construct () resulting in the echo being run.

Final Keyword

Def: Final Keyword prevents child classes from overriding a method by prefixing the definition with
final. If the class itself is being defined final then it cannot be extended

Final Method

class BaseClass {
public function test () {

echo "BaseClass::test () called\n";
}
final public function moreTesting() {
echo "BaseClass::moreTesting () called\n";

class ChildClass extends BaseClass {
public function moreTesting () {
echo "ChildClass::moreTesting() called\n";

}

// Results in Fatal error: Cannot override final method BaseClass

Final Class:

final class BaseClass {
public function test () {
echo "BaseClass::test () called\n";

::moreTesting ()

// Here it doesn't matter if you specify the function as final or not

final public function moreTesting() {
echo "BaseClass::moreTesting () called\n";

https://riptutorial.com/

75

class ChildClass extends BaseClass {

}

// Results in Fatal error:

Class ChildClass may not inherit from final class

(BaseClass)

Final constants: Unlike Java, the rina1 keyword is not used for class constants in PHP. Use the

keyword const instead.

Why do | have to use f£ina1?

0O ~NO O~ WNDNPRP

. Preventing massive inheritance chain of doom

. Encouraging composition

. Force the developer to think about user public API

. Force the developer to shrink an object's public API
. A rina1 class can always be made extensible

. extends breaks encapsulation

. You don't need that flexibility

. You are free to change the code

When to avoid £ina1: Final classes only work effectively under following assumptions:

1. There is an abstraction (interface) that the final class implements
2. All of the public API of the final class is part of that interface

$this, self and static plus the singleton

Use sthis to refer to the current object. Use se1r to refer to the current class. In other

words, use sthis->member fOr NON-static members, use selt::smember fOr static members.

In the example below, sayre110() and sayGoodbye () are using seit and sthis difference can be

observed here.

class Person {
private $name;

public function __construct ($Sname) {

Sthis->name = S$name;

}

public function getName () {

return S$this->name;

}

public function getTitle() {

return S$this->getName()." the person";

}

public function sayHello() {
echo "Hello, I'm ".S$this->getTitle() ."
";

}

public function sayGoodbye () {
echo "Goodbye from ".self::getTitle()."
";

}

https://riptutorial.com/

76

class Geek extends Person {
public function __construct ($Sname) {
parent::___construct ($Sname) ;

public function getTitle() {
return $this->getName () ." the geek";

SgeekObj = new Geek ("Ludwig") ;
SgeekObj->sayHello () ;
SgeekObj->sayGoodbye () ;

static refers to whatever class in the hierarchy you called the method on. It allows for better reuse
of static class properties when classes are inherited.

Consider the following code:

class Car {
protected static $brand = 'unknown';

public static function brand() {
return self::S$brand."\n";

class Mercedes extends Car {
protected static $brand = 'Mercedes';

class BMW extends Car {
protected static $brand = 'BMW';

echo (new Car)->brand();
echo (new BMW)->brand() ;
echo (new Mercedes)->brand();

This doesn't produce the result you want:

unknown
unknown
unknown

That's because se1rt refers to the car class whenever method vrand () is called.

To refer to the correct class, you need to use static instead:

class Car {
protected static S$brand = 'unknown';

public static function brand() {

https://riptutorial.com/ 7

return static::$brand."\n";

class Mercedes extends Car {
protected static $brand = 'Mercedes';

class BMW extends Car {
protected static S$brand = 'BMW';

echo (new Car)->brand();
echo (new BMW)->brand();
echo (new Mercedes)->brand();

This does produce the desired output:

unknown
BMW
Mercedes

See also Late static binding

The singleton

If you have an object that's expensive to create or represents a connection to some external
resource you want to reuse, i.e. a database connection where there is no connection pooling or a
socket to some other system, you can use the static and seir keywords in a class to make it a
singleton. There are strong opinions about whether the singleton pattern should or should not be
used, but it does have its uses.

class Singleton {
private static $instance = null;

public static function getInstance () {
if (!isset (self::Sinstance)) {
self::$instance = new self();

return self::$instance;

private function ___construct () {
// Do constructor stuff

}

As you can see in the example code we are defining a private static property sinstance to hold the
object reference. Since this is static this reference is shared across ALL objects of this type.

The get1nstance () Method uses a method know as lazy instantiation to delay creating the object to
the last possible moment as you do not want to have unused objects lying around in memory
never intended to be used. It also saves time and CPU on page load not having to load more

https://riptutorial.com/ 78

http://www.riptutorial.com/php/example/5420/late-static-binding

objects than necessary. The method is checking if the object is set, creating it if not, and returning
it. This ensures that only one object of this kind is ever created.

We are also setting the constructor to be private to ensure that no one creates it with the new
keyword from the outside. If you need to inherit from this class just change the private keywords to

protected.

To use this object you just write the following:

Ssingleton = Singleton::getInstance();

Now | DO implore you to use dependency injection where you can and aim for loosely coupled
objects, but sometimes that is just not reasonable and the singleton pattern can be of use.

Autoloading

Nobody wants to require Or include €very time a class or inheritance is used. Because it can be
painful and is easy to forget, PHP is offering so called autoloading. If you are already using
Composer, read about autoloading using Composer.

What exactly is autoloading?

The name basically says it all. You do not have to get the file where the requested class is stored
in, but PHP automatically loads it.

How can | do this in basic PHP without third party code?

There is the function -.tc10a4, but it is considered better practice to use =p1 autoload register.
These functions will be considered by PHP every time a class is not defined within the given
space. So adding autoload to an existing project is no problem, as defined classes (via require
i.e.) will work like before. For the sake of preciseness, the following examples will use anonymous
functions, if you use PHP < 5.3, you can define the function and pass it's name as argument to

spl_autoload_register.

Examples

spl_autoload_register (function (S$className) {
Spath = sprintf ('$s.php', $className);
if (file_exists ($path)) {
include $path;
} else {
// file not found
}
1)

The code above simply tries to include a filename with the class name and the appended
extension ".php" using syrintt. If FooBar Needs to be loaded, it l0oks if FooBar.php €Xists and if so
includes it.

Of course this can be extended to fit the project's individual need. If _ inside a class name is used

https://riptutorial.com/ 79

http://www.riptutorial.com/php/example/3397/autoloading-with-composer
https://secure.php.net/manual/function.autoload.php
https://secure.php.net/manual/function.spl-autoload-register.php
https://secure.php.net/sprintf

to group, €.9. user_post and user_tmage both refer to user, both classes can be kept in a folder
called "User" like so:

spl_autoload_register (function (S$className) {
// replace _ by / or \ (depending on OS)
Spath = sprintf('$s.php', str_replace('_', DIRECTORY_SEPARATOR, S$className));
if (file_exists ($path)) {
include S$path;
} else {
// file not found

}) i

The class user_rost Will now be loaded from "User/Post.php", etc.

spl_autoload_register Can be tailored to various needs. All your files with classes are named
"class.CLASSNAME.php"? No problem. Various nesting (user_post_cContent =>
"User/Post/Content.php")? No problem either.

If you want a more elaborate autoloading mechanism - and still don't want to include Composer -
you can work without adding third party libraries.

spl_autoload_register (function (S$className) {
Spath = sprintf ('1s%2$s%3$s.php',
// %1$s: get absolute path
realpath (dirname (___FILE_)),
// %2$s: / or \ (depending on 0OS)
DIRECTORY_SEPARATOR,
// %3$s: don't wory about caps or not when creating the files

strtolower (
// replace _ by / or \ (depending on 0S)
str_replace('_', DIRECTORY_SEPARATOR, S$className)

)i

if (file_exists ($path)) {
include $path;
} else {
throw new Exception (
sprintf ('Class with name %1$s not found. Looked in %2$s.',
SclassName,
Spath

Using autoloaders like this, you can happily write code like this:

require_once './autoload.php'; // where spl_autoload_register is defined

Sfoo = new Foo_Bar (new Hello_World());

Using classes:

https://riptutorial.com/ 80

class Foo_Bar extends Foo {}
class Hello_World implements Demo_Classes {}

These examples will be include classes from foo/bar.php, foo.php, hello/world.php and

demo/classes.php.

Anonymous Classes

Anonymous classes were introduced into PHP 7 to enable for quick one-off objects to be easily

created. They can take constructor arguments, extend other classes, implement interfaces, and
use traits just like normal classes can.

In its most basic form, an anonymous class looks like the following:

new class ("constructor argument") {
public function __ construct ($Sparam) {
var_dump ($Sparam) ;
}

}; // string(20) "constructor argument"

Nesting an anonymous class inside of another class does not give it access to private or protected
methods or properties of that outer class. Access to protected methods and properties of the outer
class can be gained by extending the outer class from the anonymous class. Access to private

properties of the outer class can be gained by passing them through to the anonymous class's
constructor.

For example:

class Outer {
private $prop = 1;
protected $prop2 = 2;
protected function funcl () {
return 3;

}

public function func2() {
// passing through the private S$this->prop property
return new class ($Sthis->prop) extends Outer {
private $prop3;

public function __construct ($Sprop) {
Sthis->prop3 = Sprop;
t

public function func3() {
// accessing the protected property Outer::Sprop2
// accessing the protected method Outer::funcl ()
// accessing the local property self::$prop3 that was private from
Outer: :S$prop
return $this->prop2 + S$this->funcl() + $this->prop3;

https://riptutorial.com/ 81

echo (new Outer)->func2 ()->func3(); // 6

Defining a Basic Class

An object in PHP contains variables and functions. Objects typically belong to a class, which
defines the variables and functions that all objects of this class will contain.

The syntax to define a class is:

class Shape {
public $sides = 0;

public function description() {

return "A shape with S$this->sides sides.";

}

Once a class is defined, you can create an instance using:
SmyShape = new Shape () ;
Variables and functions on the object are accessed like this:

SmyShape = new Shape () ;
SmyShape->sides = 6;

print $myShape->description(); // "A shape with 6 sides"

EHSU’UC'[OF

Classes can define a special __construct () method, which is executed as part of object creation.
This is often used to specify the initial values of an object:

class Shape {
public $sides = 0;

public function __ construct ($sides) {
Sthis->sides = $sides;
}
public function description() {
return "A shape with $this->sides sides.";
}

SmyShape = new Shape (6);

print $myShape->description(); // A shape with 6 sides

https://riptutorial.com/

Extending Another Class

Class definitions can extend existing class definitions, adding new variables and functions as well
as modifying those defined in the parent class.

Here is a class that extends the previous example:

class Square extends Shape {
public $sidelLength = 0;

public function __ construct ($sidelLength) {
parent::___construct (4);

Sthis->sidelLength = $sideLength;

public function perimeter () {
return S$this->sides * $this->sidelength;

}

public function area() {
return $this->sidelLength * $this->sidelLength;

}

The square class contains variables and behavior for both the shape class and the square class:

SmySquare = new Square (10);
print $mySquare->description()/ // A shape with 4 sides
print SmySquare->perimeter() // 40

print S$mySquare->area() // 100

Read Classes and Objects online: https://riptutorial.com/php/topic/504/classes-and-objects

https://riptutorial.com/

83

https://riptutorial.com/php/topic/504/classes-and-objects

C_hapter 11: Closure

Examples

Basic usage of a closure

A closure is the PHP equivalent of an anonymous function, eg. a function that does not have a
name. Even if that is technically not correct, the behavior of a closure remains the same as a
function's, with a few extra features.

A closure is nothing but an object of the Closure class which is created by declaring a function
without a name. For example:

<?php

SmyClosure = function() {
echo 'Hello world!';

}i

SmyClosure(); // Shows "Hello world!"

Keep in mind that smyciosure iS @an instance of ciosure SO that you are aware of what you can truly
do with it (cf. hitp://fr2.php.net/manual/en/class.closure.php)

The classic case you would need a Closure is when you have to give a cai1abie to a function, for
instance usort.

Here is an example where an array is sorted by the number of siblings of each person:

<?php

Sdata = [
[
'name' => 'John',
'nbrOfSiblings' => 2,

'name' => 'Stan',
'nbrOfSiblings' => 1,

'name' => 'Tom',
'nbrOfSiblings' => 3,

17
usort (Sdata, function ($Sel, $e2) {
if ($Sel['nbrOfSiblings'] == $e2['nbrOfSiblings']) {

return 0;

}

return $el['nbrOfSiblings'] < $e2['nbrOfSiblings'] ? -1 : 1;

https://riptutorial.com/

84

http://fr2.php.net/manual/en/class.closure.php
http://fr2.php.net/manual/en/function.usort.php

P

var_dump ($data); // Will show Stan first, then John and finally Tom

Using external variables

It is possible, inside a closure, to use an external variable with the special keyword use. For
instance:
<?php
Squantity = 1;
Scalculator = function (Snumber) use (Squantity) {
return S$number + Squantity;
¥

var_dump (Scalculator(2)); // Shows "3"

You can go further by creating "dynamic” closures. It is possible to create a function that returns a

specific calculator, depending on the quantity you want to add. For example:

<?php

function createCalculator ($Squantity) {
return function ($number) use ($Squantity) {
return $number + Squantity;
}i

Scalculatorl = createCalculator(1l);
Scalculator?2 = createCalculator(2);
var_dump (Scalculatorl (2)); // Shows "3"
var_dump (Scalculator2(2)); // Shows "4"

Basic closure binding

As seen previously, a closure is nothing but an instance of the Closure class, and different

methods can be invoked on them. One of them is nindro, Which, given a closure, will return a new

one that is bound to a given object. For example:

<?php

SmyClosure = function() {
echo $this->property;
}i

class MyClass

{
public $property;

public function __ construct ($SpropertyValue)

{

https://riptutorial.com/

85

Sthis->property = S$propertyValue;

SmyInstance = new MyClass ('Hello world!"'");
SmyBoundClosure = $myClosure->bindTo ($SmyInstance) ;
SmyBoundClosure (); // Shows "Hello world!"

Closure binding and scope
Let's consider this example:

<?php

SmyClosure = function() {
echo $this->property;
}i

class MyClass

{
public S$Sproperty;

public function __construct ($SpropertyValue)
{

Sthis->property = $propertyValue;

}

SmyInstance = new MyClass('Hello world!"'");
SmyBoundClosure = $myClosure->bindTo ($SmyInstance) ;
$SmyBoundClosure (); // Shows "Hello world!"

Try to change the property Visibility to either protected Or private. YOU get a fatal error indicating
that you do not have access to this property. Indeed, even if the closure has been bound to the
object, the scope in which the closure is invoked is not the one needed to have that access. That
is what the second argument of bindro is for.

The only way for a property to be accessed if it's private IS that it is accessed from a scope that
allows it, ie. the class's scope. In the just previous code example, the scope has not been
specified, which means that the closure has been invoked in the same scope as the one used
where the closure has been created. Let's change that:

<?php

SmyClosure = function() {
echo $this->property;

bi

class MyClass

{

private Sproperty; // S$property is now private

public function __construct ($SpropertyValue)

https://riptutorial.com/ 86

Sthis->property = S$propertyValue;

SmyInstance = new MyClass ('Hello world!"'");
SmyBoundClosure = $myClosure->bindTo ($SmyInstance, MyClass::class);

SmyBoundClosure (); // Shows "Hello world!"

As just said, if this second parameter is not used, the closure is invoked in the same context as the
one used where the closure has been created. For example, a closure created inside a method's
class which is invoked in an object context will have the same scope as the method's:

<?php

class MyClass

{
private S$property;

public function __construct (S$SpropertyValue)
{
Sthis->property = S$propertyValue;

public function getDisplayer ()
{
return function() {
echo $this->property;
bi

SmyInstance = new MyClass ('Hello world!'");
Sdisplayer = SmyInstance->getDisplayer();

Sdisplayer(); // Shows "Hello world!"

Binding a closure for one call

Since PHP7, it is possible to bind a closure just for one call, thanks to the =11 method. For
instance:

<?php

class MyClass

{
private S$property;

public function __ construct ($SpropertyValue)
{
Sthis->property = S$propertyValue;

SmyClosure = function() {
echo $this->property;

https://riptutorial.com/ 87

http://fr2.php.net/manual/fr/closure.call.php

}i
SmyInstance = new MyClass ('Hello world!"'");

SmyClosure—->call ($SmyInstance); // Shows "Hello world!"

As opposed to the nindTo Mmethod, there is no scope to worry about. The scope used for this call is
the same as the one used when accessing or invoking a property of smyrnstance.

Use closures to implement observer pattern

In general, an observer is a class with a specific method being called when an action on the
observed object occurs. In certain situations, closures can be enough to implement the observer
design pattern.

Here is a detailed example of such an implementation. Let's first declare a class whose purpose is
to notify observers when its property is changed.

<?php

class ObservedStuff implements SplSubject
{

protected S$property;

protected S$observers = [];

public function attach (SplObserver S$Sobserver)
{

Sthis—->observers|[] = S$Sobserver;

return S$Sthis;

public function detach (SplObserver S$Sobserver)
{
if (false !== S$Skey = array_search ($observer, S$this->observers, true)) {
unset (Sthis->observers|[S$key]) ;

public function notify ()
{
foreach ($Sthis->observers as S$Sobserver) {
Sobserver->update ($this) ;

public function getProperty ()
{
return S$this->property;

public function setProperty (Sproperty)
{
Sthis—->property = S$Sproperty;
Sthis->notify () ;

https://riptutorial.com/ 88

Then, let's declare the class that will represent the different observers.

<?php

class NamedObserver implements SplObserver

{
protected $name;
protected S$closure;

public function __ construct (Closure S$closure, S$name)
{
Sthis->closure = $closure->bindTo ($this, S$this);
Sthis—->name = $name;

public function update (SplSubject S$subject)
{

$Sclosure = S$Sthis->closure;

Sclosure ($subject) ;

Let's finally test this:

<?php
So = new ObservedStuff;
Sobserverl = function (SplSubject S$subject) {
echo $this->name, ' has been notified! New property value: ', S$subject->getProperty(),
ll\n"’.

}i

Sobserver2 = function (SplSubject S$subject) {

echo $this->name, ' has been notified! New property value: ', S$subject->getProperty(),
ll\n"’.
}i
So—>attach (new NamedObserver (Sobserverl, 'Observerl'))
—>attach (new NamedObserver ($Sobserver2, 'Observer2'));

So->setProperty ('Hello world!"'");

// Shows:

// Observerl has been notified! New property value: Hello world!
// Observer2 has been notified! New property value: Hello world!

Note that this example works because the observers share the same nature (they are both
"named observers.")

Read Closure online: https://riptutorial.com/php/topic/2634/closure

https://riptutorial.com/ 89

https://riptutorial.com/php/topic/2634/closure

C_hapter 12: Coding Conventions

Examples

PHP Tags

You should always use <2php 2> tags or short-echo tags <2= »>. Other variations (in particular,
short tags <2 2>) should not be used as they are commonly disabled by system administrators.

When a file is not expected to produce output (the entire file is PHP code) the closing 2> syntax
should be omitted to avoid unintentional output, which can cause problems when a client parses
the document, in particular some browsers fail to recognise the <:poctvee tag and activate Quirks
Mode.

Example of a simple PHP script:

<?php

print "Hello World";

Example class definition file:

<?php

class Foo

{

}
Example of PHP embedded in HTML:

<ul id="nav">
<?php foreach ($navItems as $navItem): ?>
<a href="<?= htmlspecialchars ($navIitem->url) 2>">
<?= htmlspecialchars ($navIitem->label) ?>
</1li>
<?php endforeach; ?>

Read Coding Conventions online: https://riptutorial.com/php/topic/3977/coding-conventions

https://riptutorial.com/ 90

https://en.wikipedia.org/wiki/Quirks_mode
https://en.wikipedia.org/wiki/Quirks_mode
https://riptutorial.com/php/topic/3977/coding-conventions

C_hapter 13: Command Line Interface (CLI)

Examples

Argument Handling

Arguments are passed to the program in a manner similar to most C-style languages. sargc is an
integer containing the number of arguments including the program name, and sargv IS an array
containing arguments to the program. The first element of sargv is the name of the program.

#!/usr/bin/php

printf ("You called the program %s with %d arguments\n", S$argv[0], S$Sargc - 1);

unset (Sargv([0]);

foreach ($argv as $i => S$Sarg) {
printf ("Argument %d is %s\n", $i, Sarqg);

Calling the above application with php example.php foo bar (Where example.php contains the above
code) will result in the following output:

You called the program example.php with 2 arguments
Argument 1 is foo
Argument 2 is bar

Note that sargc and sargv are global variables, not superglobal variables. They must be imported
into the local scope using the gioba1 keyword if they are needed in a function.

This example shows the how arguments are grouped when escapes such as "+ or \ are used.

Example script
var_dump ($argc, S$Sargv);

Command line

$ php argc.argv.php ——-this-is—an-option three\ words\ together or "in one quote" but\
multiple\ spaces\ counted\ as\ one
int (6)
array (6) {
[0]=>
string (13) "argc.argv.php"
[1]=>
string(19) "--this-is-an-option"
[2]=>
string (20) "three words together"
[3]=>
string(2) "or"
[4]=>
string(12) "in one quote"

https://riptutorial.com/ 91

[5]=>
string (34) "but multiple spaces counted as one"

If the PHP script is run using -r:

$ php -r 'var_dump ($argv) ;'
array (1) {

[0]=>

string(l) "-"

Or code piped into STDIN of php:

$ echo '<?php var_dump ($argv);' | php
array (1) {

[0]=>

string(l) "-"

Input and Output Handling

When run from the CLI, the constants STDIN, STDOUT, and STDERR are predefined. These

constants are file handles, and can be considered equivalent to the results of running the following

commands:

STDIN = fopen ("php://stdin", "r")
STDOUT = fopen ("php://stdout",
STDERR = fopen ("php://stderr",

IIWII);
IIWII);

The constants can be used anywhere a standard file handle would be:

#!/usr/bin/php

while ($line = fgets (STDIN)) {
$line = strtolower (trim($line));
switch ($line) {
case "bad":
fprintf (STDERR, "%s is bad" . PHP_EOL, $line);
break;
case "quit":
exit;
default:
fprintf (STDOUT, "%s is good" . PHP_EOL, $line);

break;

The builtin stream addresses referenced earlier (ohp://stdin, php://stdout, @Nd php://stderr) Can

be used in place of filenames in most contexts:

file_put_contents ('php://stdout', 'This is stdout content');
file_put_contents ('php://stderr', 'This is stderr content');

https://riptutorial.com/

92

// Open handle and write multiple times.
Sstdout = fopen('php://stdout', 'w');

fwrite ($stdout, 'Hello world from stdout' . PHP_EOL);
fwrite ($stdout, 'Hello again');

fclose ($stdout) ;

As an alternative, you can also use readline() for input, and you can also use echo or print or any
other string printing functions for output.

Sname = readline ("Please enter your name:");
print "Hello, {S$name}.";

Return Codes
The exit construct can be used to pass a return code to the executing environment.

#!/usr/bin/php

if ($Sargv[l] === "bad") {
exit (1);

} else {
exit (0);

By default an exit code of o will be returned if none is provided, i.e. exit IS the same as exit (0). AS
exit IS not a function, parentheses are not required if no return code is being passed.

Return codes must be in the range of 0 to 254 (255 is reserved by PHP and should not be used).
By convention, exiting with a return code of o tells the calling program that the PHP script ran
successfully. Use a non-zero return code to tell the calling program that a specific error condition
occurred.

Handling Program Options

Program options can be handled with the getopt () function. It operates with a similar syntax to the
POSIX getopt command, with additional support for GNU-style long options.

#!/usr/bin/php

// a single colon indicates the option takes a value
// a double colon indicates the value may be omitted
$shortopts = "hf:v::d";

// GNU-style long options are not required

$longopts = ["help", "version"];

Sopts = getopt ($shortopts, $longopts);

// options without values are assigned a value of boolean false
// you must check their existence, not their truthiness
if (isset ($Sopts["h"]) || isset (Sopts["help"])) {

fprintf (STDERR, "Here is some help!\n");

https://riptutorial.com/ 93

http://php.net/manual/en/function.readline.php

exit;

// long options are called with two hyphens: "—--version"
if (isset (Sopts["version"])) {
fprintf (STDERR, "%s Version 223.45" . PHP_EOL, $argv[0]);
exit;
}
// options with values can be called like "-f foo", "-ffoo", or "-f=foo"
S$file = "";

if (isset (Sopts["f"])) {
$file = Sopts["f"];

}

if (empty($file)) {

fprintf (STDERR, "We wanted a file!"™ . PHP_EOL);
exit (1);

}

fprintf (STDOUT, "File is %s" . PHP_EOL, S$file);

// options with optional values must be called like "-v5" or "-v=5"
Sverbosity = 0;
if (isset (Sopts["v"])) {
Sverbosity = (Sopts["v"] === false) ? 1 : (int)Sopts["v"];
}
fprintf (STDOUT, "Verbosity is %d" . PHP_EOL, S$verbosity);

// options called multiple times are passed as an array
Sdebug = 0;
if (isset (Sopts["d"])) {

Sdebug = is_array (Sopts["d"]) ? count (Sopts(["d"]) : 1;
}
fprintf (STDOUT, "Debug is %d" . PHP_EOL, $debug);

// there is no automated way for getopt to handle unexpected options

This script can be tested like so:

./test.php —--help
./test.php --version
./test.php -f foo -ddd
./test.php -v -d —-ffoo
./test.php -v5 —-f=foo
./test.php -f foo -v 5 -d

Note the last method will not work because -v s is not valid.
Note: As of PHP 5.3.0, getopt is OS independent, working also on Windows.
Restrict script execution to command line
The function onp sapi name () and the constant rup_sar1 both return the type of interface (Server
API) that is being used by PHP. They can be used to restrict the execution of a script to the

command line, by checking whether the output of the function is equal to c11.

if (php_sapi_name () === 'cli') {

https://riptutorial.com/

94

http://php.net/php_sapi_name

echo "Executed from command line\n";
} else {
echo "Executed from web browser\n";

}

The arupa1 15 c11 () function is an example of a function that detects whether a script has been
executed from the command line:

function drupal_is_cli() {

return (!isset ($_SERVER['SERVER_SOFTWARE']) && (php_sapi_name() == 'cli' ||
(is_numeric ($S_SERVER['argc']) && $_SERVER['argc'] > 0)));
}

Running your script

On either Linux/UNIX or Windows, a script can be passed as an argument to the PHP executable,
with that script's options and arguments following:

php ~/example.php foo bar
c:\php\php.exe c:\example.php foo bar

This passes foo and bar as arguments t0 example.php.

On Linux/UNIX, the preferred method of running scripts is to use a shebang (e.g. #!/usr/bin/env
php) as the first line of a file, and set the executable bit on the file. Assuming the script is in your
path, you can then call it directly:

example.php foo bar

Using /usr/bin/env php Makes the PHP executable to be found using the PATH. Following how
PHP is installed, it might not be located at the same place (such as /usr/bin/php OF
/usr/local/bin/php), unlike env Which is Commonly available from /usr/bin/env.

On Windows, you could have the same result by adding the PHP's directory and your script to the
PATH and editing PATHEXT to allow .pnp to be detected using the PATH. Another possibility is to
add a file named example.bat OF example.cmd IN the same directory as your PHP script and write this
line into it:

c:\php\php.exe "%~dpOexample.php" $%$*

Or, if you added PHP's directory into the PATH, for convenient use:

php "%$~dpOexample.php" %*

Behavioural differences on the command line

When running from the CLI, PHP exhibits some different behaviours than when run from a web
server. These differences should be kept in mind, especially in the case where the same script

https://riptutorial.com/ 95

https://api.drupal.org/api/drupal/includes!bootstrap.inc/function/drupal_is_cli/7.x
https://en.wikipedia.org/wiki/Shebang_(Unix)

might be run from both environments.

No directory change When running a script from a web server, the current working
directory is always that of the script itself. The code require (*./stuff.inc"); assumes the file
is in the same directory as the script. On the command line, the current working directory is
the directory you're in when you call the script. Scripts that are going to be called from the
command line should always use absolute paths. (Note the magic constants _ prr__ and
__r1LE__ continue to work as expected, and return the location of the script.)

No output buffering The php.ini directives output_buffering and implicit_flush default to
false and true, respectively. Buffering is still available, but must be explicitly enabled,
otherwise output will always be displayed in real time.

No time limit The php.ini directive max_execution_time IS Set to zero, so scripts will not time
out by default.

No HTML errors In the event you have enabled the php.ini directive htmi_errors, it will be
ignored on the command line.

Different php.ini can be loaded. When you are using php from cli it can use different

php.ini than web server do. You can know what file is using by running php —-ini.

Running built-in web server

As from version 5.4, PHP comes with built-in server. It can be used to run application without need

to install other http server like nginx or apache. Built-in server is designed only in controller
environment for development and testing purposes.

It can be run with command php -S :

To test it create index.php file containing

<?php
echo "Hello World from built-in PHP server";

and run command php -S localhost:8080

Now yout should be able to see content in browser. To check this, navigate to
http://localhost:8080

Every access should result in log entry written to terminal

[Mon Aug 15 18:20:19 2016] ::1:52455 [200]: /

Edge Cases of getopt()

This example shows the behaviour of getopt When the user input is uncommon:
getopt . php

var_dump (
getopt ("ab:c::", ["delta", "epsilon:", "zeta::"])
)

https://riptutorial.com/

96

Shell command line

$ php getopt.php —-a -a -bbeta -b beta -cgamma --delta —--epsilon --zeta —--zeta=f -c gamma
array (6) {
[nan]:>

array (2) {

[0]=>
bool (false)
[1]=>
bool (false)
}
["b"]=>
array (2) {
[0]=>
string(4) "beta"
[1]=>

string(4) "beta"
}
[YeV]=>
array (2) {
[0]=>
string(5) "gamma"
[1]1=>
bool (false)
}
["delta"]=>
bool (false)
["epsilon"]=>
string(6) "--zeta"
["zeta"]=>
string(l) "f"

From this example, it can be seen that:

* Individual options (no colon) always carry a boolean value of ra1se if enabled.
 If an option is repeated, the respective value in the output of getopt Will become an array.
* Required argument options (one colon) accept one space or no space (like optional

argument options) as separator
» After one argument that cannot be mapped into any options, the options behind will not be

mapped either.

Read Command Line Interface (CLI) online: https://riptutorial.com/php/topic/2880/command-line-
interface--cli-

https://riptutorial.com/

97

https://riptutorial.com/php/topic/2880/command-line-interface--cli-
https://riptutorial.com/php/topic/2880/command-line-interface--cli-

C_hapter 14: Comments

Remarks

Keep the following tips in mind when deciding how to comment your code:

* You should always write your code as if comments didn't exist, using well chosen variable
and function names.

» Comments are meant to communicate to other human beings, not to repeat what is written in
the code.

» Various php commenting style guides exist (e.g. pear, zend, etc). Find out which one your
company uses and use it consistently!

Examples

Single Line Comments

The single line comment begins with "//" or "#". When encountered, all text to the right will be
ignored by the PHP interpreter.

// This is a comment
This is also a comment

echo "Hello World!"; // This is also a comment, beginning where we see "//"

Multi Line Comments

The multi-line comment can be used to comment out large blocks of code. It begins with /+ and
ends with /.

/* This is a multi-line comment.

It spans multiple lines.

This is still part of the comment.
*/

Read Comments online: https://riptutorial.com/php/topic/6852/comments

https://riptutorial.com/ 98

https://pear.php.net/manual/en/standards.sample.php
https://framework.zend.com/manual/1.12/en/coding-standard.coding-style.html#coding-standards.inline-documentation
https://riptutorial.com/php/topic/6852/comments

C_hapter 15: Common Errors

Examples

Unexpected $end
Parse error: syntax error, unexpected end of file in C:\xampp\htdocs\stack\index.php on line 4

If you get an error like this (or sometimes unexpected send, depending on PHP version), you will
need to make sure that you've matched up all inverted commas, all parentheses, all curly braces,
all brackets, etc.

The following code produced the above error:

<?php
if (true) {
echo "asdf";

?>

Notice the missing curly brace. Also do note that the line number shown for this error is irrelevant -
it always shows the last line of your document.

Call fetch_assoc on boolean
If you get an error like this:

Fatal error: Call to a member function fetch_assoc() on boolean in
C:\xampp\htdocs\stack\index.php on line 7

Other variations include something along the lines of:

mysqgl_fetch_assoc () expects parameter 1 to be resource, boolean given...

These errors mean that there is something wrong with either your query (this is a PHP/MySQL
error), or your referencing. The above error was produced by the following code:
Smysgli = new mysqgli("localhost", "root", "");

Squery = "SELCT * FROM db"; // notice the errors here
Sresult = $Smysqgli->query (Squery) ;

Srow = S$result->fetch_assoc();
In order to "fix" this error, it is recommended to make mysqgl throw exceptions instead:

// add this at the start of the script
mysqli_report (MYSQLI_REPORT_ERROR | MYSQLI_REPORT_STRICT) ;

https://riptutorial.com/ 99

This will then throw an exception with this much more helpful message instead:

You have an error in your SQL syntax; check the manual that corresponds to your MariaDB server
version for the right syntax to use near 'SELCT * FROM db' at line 1

Another example that would produce a similar error, is where you simply just gave the wrong
information to the mysq1_fetch_assoc function or similar:

$john = true;
mysgli_fetch_assoc ($john, $mysgli); // this makes no sense??

Read Common Errors online: https://riptutorial.com/php/topic/3830/common-errors

https://riptutorial.com/ 100

https://riptutorial.com/php/topic/3830/common-errors

C_hapter 16: Compilation of Errors and
Warnings

Examples

Notice: Undefined index

Appearance :
Trying to access an array by a key that does not exist in the array
Possible Solution :

Check the availability before accessing it. Use:

1.isset()
2.azray7keyiexists()

Warning: Cannot modify header information - headers already sent

Appearance :

Happens when your script tries to send a HTTP header to the client but there already was output
before, which resulted in headers to be already sent to the client.

Possible Causes :

1. Print, echo: Output from print and echo statements will terminate the opportunity to send
HTTP headers. The application flow must be restructured to avoid that.

2. Raw HTML areas: Unparsed HTML sections in a .php file are direct output as well. Script
conditions that will trigger a neader () call must be noted before any raw blocks.

<!DOCTYPE html>
<?php
// Too late for headers already.

3. Whitespace before <2pnp for "script.php line 1" warnings: If the warning refers to output in line
1, then it's mostly leading whitespace, text or HTML before the opening <2php token.

<?php
There's a SINGLE space/newline before <? - Which already seals it.

Reference from SO answer by Mario

Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM

https://riptutorial.com/ 101

http://php.net/manual/en/function.isset.php
http://php.net/manual/en/function.array-key-exists.php
http://stackoverflow.com/a/8028987/5447994
http://stackoverflow.com/users/345031/mario

Appearance:

"Paamayim Nekudotayim" means "double colon” in Hebrew; thus this error refers to the
inappropriate use of the double colon operator (::). The error is typically caused by an attempt to
call a static method that is, in fact, not static.

Possible Solution:

Sclassname: :doMethod () ;

If the above code causes this error, you most likely need to simply change the way you call the
method:

Sclassname—>doMethod () ;

The latter example assumes that sciassname IS @an instance of a class, and the dovethod () IS not a
static method of that class.

Read Compilation of Errors and Warnings online:
https://riptutorial.com/php/topic/3509/compilation-of-errors-and-warnings

https://riptutorial.com/ 102

https://riptutorial.com/php/topic/3509/compilation-of-errors-and-warnings

C_hapter 17: Compile PHP Extensions

Examples

Compiling on Linux
To compile a PHP extension in a typical Linux environment, there are a few pre-requisites:

» Basic Unix skills (being able to operate "make" and a C compiler)
* An ANSI C compiler
» The source code for the PHP extension you want to compile

Generally there are two ways to compile a PHP extension. You can statically compile the
extension into the PHP binary, or compile it as a shared module loaded by your PHP binary at
startup. Shared modules are more likely since they allow you to add or remove extensions without
rebuilding the entire PHP binary. This example focuses on the shared option.

If you installed PHP via your package manager (apt-get install, yum install, €tC..) you will need
to install the -qev package for PHP, which will include the necessary PHP header files and phpize
script for the build environment to work. The package might be named something like phps-dev Or
php7-dev, but be sure to use your package manager to search for the appropriate name using your
distro's repositories. They can differ.

If you built PHP from source the header files most likely already exist on your system (usually in
/usr/include Of /usr/local/include).

%ps to compile

After you check to make sure you have all the prerequisites, necessary to compile, in place you
can head over to pecl.php.net, select an extension you wish to compile, and download the tar ball.

1. Unpack the tar ball (e.g. tar xfvz yaml-2.0.0rRC8.tgz)

2. Enter the directory where the archive was unpacked and run phpize

3. You should now see a newly created .conrigure Script if all went well, run that . /configure
4. Now you will need to run maxe, which will compile the extension

5. Finally, make insta11 Will copy the compiled extension binary to your extension directory

The make insta1l1 step will typically provide the installation path for you where the extension was
copied. This is usually in /usr/1ib/, for example it might be something like
/usr/1ib/php5/20131226/yanl.so. But this depends on your configuration of PHP (i.e. ——with-prefix)
and specific API version. The APl number is included in the path to keep extensions built for
different API versions in separate locations.

Loading the Extension in PHP

https://riptutorial.com/ 103

http://pecl.php.net

To load the extension in PHP, find your loaded php.ini file for the appropriate SAPI, and add the

line extension=yaml.so then restart PHP. Change yan1.so to the name of the actual extension you
installed, of course.

For a Zend extension you do need to provide the full path to the shared object file. However, for
normal PHP extensions this path derived from the <-tcns:0n ai+ directive in your loaded
configuration, or from the seata environment during initial setup.

Read Compile PHP Extensions online: https://riptutorial.com/php/topic/6767/compile-php-
extensions

https://riptutorial.com/ 104

http://php.net/ini.core#ini.extension-dir
https://riptutorial.com/php/topic/6767/compile-php-extensions
https://riptutorial.com/php/topic/6767/compile-php-extensions

C_hapter 18: Composer Dependency Manager

Introduction

Composer is PHP's most commonly used dependency manager. It's analogous to npm in Node, pip
for Python, or nucet for .NET.

Syntax

* php path/to/composer.phar [command] [options] [arguments]

Parameters
license Defines the type of license you want to use in the Project.
authors Defines the authors of the project, as well as the author details.
support Defines the support emails, irc channel, and various links.
require Defines the actual dependencies as well as the package versions.

require-dev Defines the packages necessary for developing the project.
suggest Defines the package suggestions, i.e. packages which can help if installed.
autoload Defines the autoloading policies of the project.

autoload-dev Defines the autoloading policies for developing the project.

Remarks

Autoloading will only work for libraries that specify autoload information. Most libraries do and will
adhere to a standard such as PSR-0 or PSR-4.

Helpful Links

» Packagist — Browse available packages (which you can install with Composer).
 Official Documentation
» Official Getting Started guide

Few Suggestions

https://riptutorial.com/ 105

https://getcomposer.org
http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-4/
https://packagist.org
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/00-intro.md

1. Disable xdebug when running Composer.
2. Do not run Composer as root. Packages are not to be trusted.

Examples

What is Composer?

Composer is a dependency/package manager for PHP. It can be used to install, keep track of, and
update your project dependencies. Composer also takes care of autoloading the dependencies
that your application relies on, letting you easily use the dependency inside your project without
worrying about including them at the top of any given file.

Dependencies for your project are listed within a composer. json file which is typically located in your
project root. This file holds information about the required versions of packages for production and
also development.

A full outline of the composer.json SChema can be found on the Composer Website.

This file can be edited manually using any text-editor or automatically through the command line
via commands such as composer require <package> Ol composer require-dev <package>.

To start using composer in your project, you will need to create the composer. json file. You can
either create it manually or simply run composer init. After you run composer init in your terminal, it
will ask you for some basic information about your project: Package name (vendor/package - e.g.
laravel/laravel), Description - optional, Author and some other information like Minimum
Stability, License and Required Packages.

The require Key in your composer. json file specifies Composer which packages your project
depends on. require takes an object that maps package names (e.g. monolog/monolog) to version
constraints (e.g. 1.0.%).

"require": {
"composer/composer": "1.2.%*"

}

To install the defined dependencies, you will need to run the composer insta11 command and it will
then find the defined packages that matches the supplied version constraint and download it into
the vendor directory. It's a convention to put third party code into a directory named vendor.

You will notice the insta11 command also created a composer. 1ock file.

A composer.1ock file is automatically generated by Composer. This file is used to track the currently
installed versions and state of your dependencies. Running composer insta11 Will install packages
to exactly the state stored in the lock file.

Autoloading with Composer

https://riptutorial.com/ 106

https://getcomposer.org/
https://getcomposer.org/doc/04-schema.md

While composer provides a system to manage dependencies for PHP projects (e.g. from
Packagist), it can also notably serve as an autoloader, specifying where to look for specific
namespaces or include generic function files.

It starts with the composer. json file:

/] ..
"autoload": {
"psr—4": {
"MyVendorName\\MyProject": "src/"
by
"files": [
"src/functions.php"
1
by
"autoload-dev": {
"psr—4": {
"MyVendorName\\MyProject\\Tests": "tests/"

}

This configuration code ensures that all classes in the namespace rvyvendorName\MyProject are
mapped to the src directory and all classes in MyvendorName\MyProject\Tests 10 the tests directory
(relative to your root directory). It will also automatically include the file functions.php.

After putting this in your composer. json file, run composer update in a terminal to have composer
update the dependencies, the lock file and generate the autoload.php file. When deploying to a
production environment you would use composer install —-no-dev. The autoload.php file can be
found in the vendor directory which should be generated in the directory where composer. json
resides.

You should require this file early at a setup point in the lifecycle of your application using a line
similar to that below.

require_once _ DIR . '/vendor/autoload.php';

Once included, the autoi0ad.php file takes care of loading all the dependencies that you provided in
YOUI composer. json file.

Some examples of the class path to directory mapping:

® MyVendorName\MyProject\Shapes\Square =@ src/Shapes/Square.php.

® MyVendorName\MyProject\Tests\Shapes\Square =2 tests/Shapes/Square.php.
Benefits of Using Composer

Composer tracks which versions of packages you have installed in a file called composer.1ock,
which is intended to be committed to version control, so that when the project is cloned in the
future, simply running composer instal1l Will download and install all the project's dependencies.

https://riptutorial.com/ 107

https://packagist.org/

Composer deals with PHP dependencies on a per-project basis. This makes it easy to have
several projects on one machine that depend on separate versions of one PHP package.

Composer tracks which dependencies are only intended for dev environments only
composer require —--dev phpunit/phpunit

Composer provides an autoloader, making it extremely easy to get started with any package. For
instance, after installing Goutte with composer require fabpot/goutte, yOU can immediately start to
use Goutte in a new project:

<?php
require _ DIR__ . '/vendor/autoload.php';
Sclient = new Gouttel\Client ();
// Start using Goutte
Composer allows you to easily update a project to the latest version that is allowed by your

composer.json. EG. composer update fabpot/goutte, OF t0 Update each of your project's
dependencies: composer update.

Difference between 'composer install' and 'composer update’
composer update

composer update Will update our dependencies as they are specified in composer. json.

For example, if our project uses this configuration:

"require": {
"laravelcollective/html": "2.0.*"

}

Supposing we have actually installed the 2.0.1 version of the package, running composer update Will
cause an upgrade of this package (for example to 2.0.2, if it has already been released).

In detail composer update Will:

 Read composer. json

Remove installed packages that are no more required iN composer. json
Check the availability of the latest versions of our required packages
Install the latest versions of our packages

Update composer.1ock t0 store the installed packages version

composer install

composer install Will install all of the dependencies as specified in the composer.1ock file at the
version specified (locked), without updating anything.

https://riptutorial.com/ 108

https://github.com/FriendsOfPHP/Goutte

In detail:

* Read composer.lock file
* Install the packages specified in the composer.1ock file

When to install and when to update

* composer update IS MOStly used in the 'development' phase, to upgrade our project packages.

* composer install IS primarily used in the 'deploying phase' to install our application on a
production server or on a testing environment, using the same dependencies stored in the
composer.lock file created by composer update.

Composer Available Commands

about

archive
browse
clear-cache
clearcache
config
create-project
depends
diagnose

dump-
autoload

dumpautoload

exec

global

help
home

info

Short information about Composer

Create an archive of this composer package

Opens the package's repository URL or homepage in your browser.
Clears composer's internal package cache.

Clears composer's internal package cache.

Set config options

Create new project from a package into given directory.

Shows which packages cause the given package to be installed

Diagnoses the system to identify common errors.

Dumps the autoloader

Dumps the autoloader
Execute a vendored binary/script

Allows running commands in the global composer dir
($COMPOSER_HOME).

Displays help for a command
Opens the package's repository URL or homepage in your browser.

Show information about packages

https://riptutorial.com/

109

init

install

licenses

list

outdated

prohibits
remove
require
run-script
search
self-update
selfupdate
show
status

suggests

update

validate
why

why-not

Installation

Creates a basic composer.json file in current directory.

Installs the project dependencies from the composer.lock file if present, or
falls back on the composer.json.

Show information about licenses of dependencies
Lists commands

Shows a list of installed packages that have updates available, including
their latest version.

Shows which packages prevent the given package from being installed
Removes a package from the require or require-dev

Adds required packages to your composer.json and installs them

Run the scripts defined in composer.json.

Search for packages

Updates composer.phar to the latest version.

Updates composer.phar to the latest version.

Show information about packages

Show a list of locally modified packages

Show package suggestions

Updates your dependencies to the latest version according to
composer.json, and updates the composer.lock file.

Validates a composer.json and composer.lock
Shows which packages cause the given package to be installed

Shows which packages prevent the given package from being installed

You may install Composer locally, as part of your project, or globally as a system wide executable.

https://riptutorial.com/ 110

To install, run these commands in your terminal.

php -r "copy ('https://getcomposer.org/installer', 'composer-setup.php');"

to check the validity of the downloaded installer, check here against the SHA-384:
https://composer.github.io/pubkeys.html

php composer—-setup.php

php -r "unlink ('composer-setup.php');"

This will download composer.phar (@ PHP Archive file) to the current directory. Now you can run php
composer.phar 10 USe Composer, e.g.

php composer.phar install

Globally

To use Composer globally, place the composer.phar file to a directory that is part of your ratu
mv composer.phar /usr/local/bin/composer

NoOw you can use composer anywhere instead of php composer.phar, €.9.
composer install

Read Composer Dependency Manager online: https://riptutorial.com/php/topic/1053/composer-
dependency-manager

https://riptutorial.com/ 111

https://riptutorial.com/php/topic/1053/composer-dependency-manager
https://riptutorial.com/php/topic/1053/composer-dependency-manager

C_hapter 19: Constants

Syntax

 define (string $name , mixed $value [, bool $case_insensitive = false |)
e const CONSTANT_NAME = VALUE;

Remarks

Constants are used to store the values that are not supposed to be changed later. They also are
often used to store the configuration parameters especially those which define the environment
(dev/production).

Constants have types like variables but not all types can be used to initialize a constant. Objects
and resources cannot be used as values for constants at all. Arrays can be used as constants
starting from PHP 5.6

Some constant names are reserved by PHP. These include true, false, nu11 as well as many
module-specific constants.

Constants are usually named using uppercase letters.

Examples

Checking if constant is defined

Simple check

To check if constant is defined use the defined function. Note that this function doesn't care about
constant's value, it only cares if the constant exists or not. Even if the value of the constant is nu11
or ra1se the function will still return true.

<?php

define ("GOOD", false);

if (defined("GOOD")) {

print "GOOD is defined" ; // prints "GOOD is defined"
if (GOOD) {
print "GOOD is true" ; // does not print anything, since GOOD is false

}
}

if (!defined ("AWESOME")) {
define ("AWESOME", true); // awesome was not defined. Now we have defined it

}

https://riptutorial.com/ 112

http://php.net/manual/en/language.constants.php

Note that constant becomes "visible" in your code only after the line where you have defined it:

<?php
if (defined("GOOD")) {

print "GOOD is defined"; // doesn't print anyhting, GOOD is not defined yet.
define ("GOOD", false);

if (defined("GOOD")) {
print "GOOD is defined"; // prints "GOOD is defined"

G_etting all defined constants

To get all defined constants including those created by PHP use the get_defined_constants
function:

<?php

Sconstants = get_defined_constants () ;
var_dump ($Sconstants); // pretty large list

To get only those constants that were defined by your app call the function at the beginning and at
the end of your script (normally after the bootstrap process):

<?php

Sconstants = get_defined_constants () ;

define ("HELLO", "hello");

define ("WORLD", "world");

$Snew_constants = get_defined_constants () ;

Smyconstants = array_diff_ assoc($new_constants, $constants);

var_export (Smyconstants) ;

/*
Output:
array (
'HELLO' => 'hello',
'"WORLD' => 'world',

)
*/

It's sometimes useful for debugging
Defining constants

Constants are created using the const Statement or the aerine function. The convention is to use

https://riptutorial.com/ 113

UPPERCASE letters for constant names.

Define constant using explicit values

const PI = 3.14; // float

define ("EARTH_IS_FLAT", false); // boolean

const "UNKNOWN" = null; // null

define ("APP_ENV", "dev"); // string

const MAX_SESSION_TIME = 60 * 60; // integer, using (scalar) expressions is ok

const APP_LANGUAGES = ["de", "en"]; // arrays

define ("BETTER_APP_LANGUAGES", ["1lu", "de"]); // arrays

Define constant using another constant

if you have one constant you can define another one based on it:

const TAU = PI * 2;

define ("EARTH_IS_ROUND", !EARTH_IS_FLAT);

define ("MORE_UNKNOWN", UNKNOWN) ;

define ("APP_ENV_UPPERCASE", strtoupper (APP_ENV)); // string manipulation is ok too
// the above example (a function call) does not work with const:

// const TIME = time(); # fails with a fatal error! Not a constant scalar expression
define ("MAX_SESSION_TIME_IN_MINUTES", MAX_SESSION_TIME / 60);

const APP_FUTURE_LANGUAGES = [-1 => "es"] + APP_LANGUAGES; // array manipulations

define ("APP_BETTER_FUTURE_LANGUAGES", array_merge(["fr"], APP_BETTER_ LANGUAGES)) ;

Reserved constants

Some constant names are reserved by PHP and cannot be redefined. All these examples will fail:

define ("true", false); // internal constant
define ("false", true); // internal constant
define ("CURLOPT_AUTOREFERER", "something"); // will fail if curl extension is loaded

And a Notice will be issued:

Constant ... already defined in ...

Enditional defines

https://riptutorial.com/ 114

If you have several files where you may define the same variable (for example, your main config
then your local config) then following syntax may help avoiding conflicts:

defined ("PI") || define ("PI", 3.1415); // "define PI if it's not yet defined"

const V S define

define IS @ runtime expression while const a compile time one.

Thus derine allows for dynamic values (i.e. function calls, variables etc.) and even dynamic names
and conditional definition. It however is always defining relative to the root namespace.

const IS Static (as in allows only operations with other constants, scalars or arrays, and only a
restricted set of them, the so called constant scalar expressions, i.e. arithmetic, logical and
comparison operators as well as array dereferencing), but are automatically namespace prefixed
with the currently active namespace.

const ONly supports other constants and scalars as values, and no operations.
Class Constants

Constants can be defined inside classes using a const keyword.

class Foo {
const BAR_TYPE = "bar";

// reference from inside the class using self::
public function myMethod() {
return self::BAR_TYPE;

}

// reference from outside the class using <ClassName>::
echo Foo::BAR_TYPE;

This is useful to store types of items.

<?php

class Logger {
const LEVEL_INFO = 1;
const LEVEL_WARNING = 2;
const LEVEL_ERROR = 3;
// we can even assign the constant as a default value
public function log($Smessage, $level = self::LEVEL_INFO) {

echo "Message level " . $level . ": " . Smessage;

}

}

$logger = new Logger () ;
$logger->log ("Info"); // Using default value

https://riptutorial.com/ 115

Slogger—->log ("Warning", $logger::LEVEL_WARNING); // Using var
Slogger->log ("Error", Logger::LEVEL_ERROR); // using class

Constant arrays

Arrays can be used as plain constants and class constants from version PHP 5.6 onwards:

Class constant example

class Answer
const C = [2,4];

print Answer::C[1] . Answer::C[0]; // 42

Plain constant example

const ANSWER = [2,4];
print ANSWER([1] . ANSWER[O]; // 42

Also from version PHP 7.0 this functionality was ported to the <=+ function for plain constants.

define ('VALUES', [2, 31);
define ('MY ARRAY', [

1,

VALUES,
1)

print MY_ARRAY[1]([11; // 3

Using constants
To use the constant simply use its name:

if (EARTH_IS_FLAT) {
print "Earth is flat";

print APP_ENV_UPPERCASE;

or if you don't know the name of the constant in advance, use the constant function:

// this code is equivalent to the above code

$constl = "EARTH_IS_FLAT";
Sconst2 = "APP_ENV_UPPERCASE";
if (constant ($Sconstl)) {

print "Earth is flat";

https://riptutorial.com/ 116

http://php.net/manual/en/function.define.php

print constant ($Sconst2);

Read Constants online: https://riptutorial.com/php/topic/1688/constants

https://riptutorial.com/ 117

https://riptutorial.com/php/topic/1688/constants

C_hapter 20: Contributing to the PHP Core

Remarks

PHP is an open source project, and as such, anyone is able to contribute to it. Broadly speaking,
there are two ways to contribute to the PHP core:

* Bug fixing
* Feature additions

Before contributing, however, it is important to understand how PHP versions are managed and
released so that bug fixes and feature requests can target the correct PHP version. The developed
changes can be submitted as a pull request to the PHP Github repository. Useful information for
developers can be found on the "Get Involved" section of the PHP.net site and the #externals
forum.

Contributing with Bug Fixes

For those looking to begin contributing to the core, it's generally easier to start with bug fixing. This
helps to gain familiarity with PHP's internals before attempting to make more complex
modifications to the core that a feature would require.

With respect to the version management process, bug fixes should target the lowest affected,
whilst still supported PHP version. It's this version that bug fixing pull requests should target. From
there, an internals member can merge the fix into the correct branch and then merge it upwards to
later PHP versions as necessary.

For those looking to get started on resolving bugs, a list of bug reports can be found at
bugs.php.net.

Contributing with Feature Additions

PHP follows an RFC process when introducing new features and making important changes to the
language. RFCs are voted on by members of php.net, and must achieve either a simple majority
(50% + 1) or a super majority (2/3 + 1) of the total votes. A super majority is required if the change
affects the language itself (such as introducing a new syntax), otherwise only a simple majority is
required.

Before RFCs can be put to vote, they must undergo a discussion period of at least 2 weeks on the
official PHP mailing list. Once this period has finished, and there are no open issues with the RFC,
it can then be moved into voting, which must last at least 1 week.

If a user would like to revive a previously rejected RFC, then they can do so only under one of the
following two circumstances:

https://riptutorial.com/ 118

https://github.com/php/php-src#pull-requests
https://secure.php.net/get-involved.php
https://externals.io/
https://externals.io/
http://bugs.php.net

* 6 months has passed from the previous vote
» The author(s) make substantial enough changes to the RFC that would likely affect the
outcome of the vote should the RFC be put to vote again.

The people who have the privilege to vote will either be contributors to PHP itself (and so have
php.net accounts), or be representatives of the PHP community. These representatives are
chosen by those with php.net accounts, and will either be lead developers of PHP-based projects
or regular participants to internals discussions.

When submitting new ideas for proposal, it is almost always required for the proposer to write, at
the very least, a proof-of-concept patch. This is because without an implementation, the
suggestion simply becomes another feature request that is unlikely to be fulfilled in the near future.

A thorough how-to of this process can be found at the official How To Create an RFC page.

Releases

Major PHP versions have no set release cycle, and so they may be released at the discretion of
the internals team (whenever they see fit for a new major release). Minor versions, on the other
hand, are released annually.

Prior to every release in PHP (major, minor, or patch), a series of release candidates (RCs) are
made available. PHP does not use an RC as other projects do (i.e. if an RC has not problems
found with it, then make it as the next final release). Instead, it uses them as a form of final betas,
where typically a set number of RCs are decided before the final release is made.

Versioning

PHP generally attempts to follow semantic versioning where possible. As such, backwards
compatibility (BC) should be maintained in minor and patch versions of the language. Features
and changes that preserve BC should target minor versions (not patch versions). If a feature or
change has the potential to break BC, then they should aim to target the next major PHP version (
X.y.z) instead.

Each minor PHP version (x.Y.z) has two years of general support (so-called "active support”) for
all types of bug fixes. An additional year on top of that is added for security support, where only
security-related fixes are applied. After the three years is up, support for that version of PHP is
dropped completely. A list of currently supported PHP versions can be found at php.net.

Examples

Setting up a basic development environment

PHP's source code is hosted on GitHub. To build from source you will first need to check out a
working copy of the code.

https://riptutorial.com/ 119

https://wiki.php.net/rfc/howto
http://php.net/supported-versions.php
https://github.com/php/php-src

mkdir /usr/local/src/php-7.0/
cd /usr/local/src/php-7.0/
git clone -b PHP-7.0 https://github.com/php/php-src .

If you want to add a feature, it's best to create your own branch.

git checkout -b my_private_branch

Finally, configure and build PHP

./buildconf
./configure
make

make test
make install

If configuration fails due to missing dependencies, you will need to use your operating system's
package management system to install them (e.g. yun, apt, €tc.) or download and compile them
from source.

Read Contributing to the PHP Core online: https://riptutorial.com/php/topic/3929/contributing-to-
the-php-core

https://riptutorial.com/ 120

https://riptutorial.com/php/topic/3929/contributing-to-the-php-core
https://riptutorial.com/php/topic/3929/contributing-to-the-php-core

C_hapter 21: Contributing to the PHP Manual

Introduction

The PHP Manual provides both a functional reference and a language reference along with
explanations of PHP's major features. The PHP Manual, unlike most languages' documentation,
encourages PHP developers to add their own examples and notes to each page of the
documentation. This topic explains contribution to the PHP manual, along with tips, tricks, and
guidelines for best practice.

Remarks

Contributions to this topic should mainly outline the process around contributing to the PHP
Manual, e.g. explain how to add pages, how to submit them for review, finding areas to contribute
content, too and so on.

Examples

Improve the official documentation

PHP has great official documentation already at http://php.net/manual/. The PHP Manual
documents pretty much all language features, the core libraries and most available extensions.
There are plenty of examples to learn from. The PHP Manual is available in multiple languages
and formats.

Best of all, the documentation is free for anyone to edit.

The PHP Documentation Team provides an online editor for the PHP Manual at
https://edit.php.net. It supports multiple Single-Sign-On services, including logging in with your
Stack Overflow account. You can find an introduction to the editor at hitps://wiki.php.net/doc/editor

Changes to the PHP Manual need to be approved by people from the PHP Documentation Team
having Doc Karma. Doc Karma is somewhat like reputation, but harder to get. This peer review
process makes sure only factually correct information gets into the PHP Manual.

The PHP Manual is written in DocBook, which is an easy to learn markup language for authoring
books. It might look a little bit complicated at first sight, but there are templates to get you started.
You certainly don't need to be a DocBook expert to contribute.

Tips for contributing to the manual

The following is a list of tips for those who are looking to contribute to the PHP manual:

* Follow the manual's style guidelines. Ensure that the manual's style guidelines are always

https://riptutorial.com/ 121

http://php.net/manual/
https://edit.php.net
https://wiki.php.net/doc/editor
http://doc.php.net/tutorial/style.php

being followed for consistency's sake.

* Perform spelling and grammar checks. Ensure proper spelling and grammar is being
used - otherwise the information presented may be more difficult to assimilate, and the
content will look less professional.

* Beterse in explanations. Avoid rambling to clearly and concisely present the information to
developers who are looking to quickly reference it.

» Separate code from its output. This gives cleaner and less convoluted code examples for
developers to digest.

» Check the page section order. Ensure that all sections of the manual page being edited
are in the correct order. Uniformity in the manual makes it easier to quickly read and lookup
information.

* Remove PHP 4-related content. Specific mentions to PHP 4 are no longer relevant given
how old it is now. Mentions of it should be removed from the manual to prevent convoluting it
with unnecessary information.

* Properly version files. When creating new files in the documentation, ensure that the
revision ID of the file is set to nothing, like so: <! —- srevisions —->.

* Merge useful comments into the manual. Some comments contribute useful information
that the manual could benefit from having. These should be merged into the main page's
content.

» Don't break the documentation build. Always ensure that the PHP manual builds properly
before committing the changes.

Read Contributing to the PHP Manual online: https://riptutorial.com/php/topic/2003/contributing-to-
the-php-manual

https://riptutorial.com/ 122

https://riptutorial.com/php/topic/2003/contributing-to-the-php-manual
https://riptutorial.com/php/topic/2003/contributing-to-the-php-manual

C_hapter 22: Control Structures

Examples

Alternative syntax for control structures

PHP provides an alternative syntax for some control structures: if, while, for, foreach, and switch.

When compared to the normal syntax, the difference is, that the opening brace is replaced by a
colon (:) and the closing brace is replaced by endif;, endwhile;, endfor;, endforeach;, Of endswitch;,
respectively. For individual examples, see the topic on alternative syntax for control structures.

if ($Sa == 42):
echo "The answer to life, the universe and everything is 42.";
endif;

Multiple e1seit statements using short-syntax:

if ($a == 5):
echo "a equals 5";
elseif ($Sa == 6):
echo "a equals 6";
else:
echo "a is neither 5 nor 6";
endif;

PHP Manual - Control Structures - Alternative Syntax
while
while lOOp iterates through a block of code as long as a specified condition is true.

$i = 1;

while ($i < 10) {
echo $i;
Si++;

Output: 123456789

For detailed information, see the Loops topic.
do-while

do-while lOOp first executes a block of code once, in every case, then iterates through that block of
code as long as a specified condition is true.

https://riptutorial.com/ 123

http://www.riptutorial.com/php/topic/1199/alternative-syntax-for-control-structures
http://php.net/manual/en/control-structures.alternative-syntax.php
http://www.riptutorial.com/php/example/7244/while

do {
Si++;
echo $i;
} while ($i < 10);

Output: "12345678910°
For detailed information, see the Loops topic.

goto

The goto Operator allows to jump to another section in the program. It's available since PHP 5.3.
The goto instruction is a goto followed by the desired target label: goto MyLabel;.
The target of the jump is specified by a label followed by a colon: vyrabe:.

This example will print ze110 worid!:

<?php
goto MyLabel;
echo 'This text will be skipped, because of the jump.';

MyLabel:
echo 'Hello World!';
2>

declare

declare IS USed to set an execution directive for a block of code.

The following directives are recognized:

® ticks

encoding

® strict_types
For instance, set ticks to 1:
declare (ticks=1);
To enable strict type mode, the dec1are Statement is used with the strict_types declaration:

declare (strict_types=1);

if else

The it statement in the example above allows to execute a code fragment, when the condition is
met. When you want to execute a code fragment, when the condition is not met you extend the it
with an eise.

https://riptutorial.com/ 124

http://www.riptutorial.com/php/example/7242/do---while
http://php.net/manual/en/control-structures.declare.php#control-structures.declare.ticks
http://php.net/manual/en/control-structures.declare.php#control-structures.declare.encoding
http://php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration.strict

if (Sa > S$b) {
echo "a is greater than b";
} else {
echo "a is NOT greater than b";
PHP Manual - Control Structures - Else

The ternary operator as shorthand syntax for if-else

The ternary operator evaluates something based on a condition being true or not. It is a
comparison operator and often used to express a simple if-else condition in a shorter form. It
allows to quickly test a condition and often replaces a multi-line if statement, making your code
more compact.

This is the example from above using a ternary expression and variable values: sa=1; spb=2;
echo ($a > $b) ? "a is greater than b" : "a is NOT greater than b";
Outputs: a is NOT greater than b.

include & require

require

require IS Similar to inciude, except that it will produce a fatal &_cove11e_grror level error on failure.
When the require fails, it will halt the script. When the inciude fails, it will not halt the script and
only emit _warn1NG.

require 'file.php';

PHP Manual - Control Structures - Require

Include

The inc1ude statement includes and evaluates a file.

Jvariables.php
$Sa = 'Hello World!';
Jmain.php

include 'variables.php';
echo $a;
// Output: “Hello World!"

https://riptutorial.com/ 125

http://php.net/manual/en/control-structures.else.php
http://php.net/manual/de/language.operators.comparison.php#language.operators.comparison.ternary
http://php.net/manual/en/function.require.php

Be careful with this approach, since it is considered a code smell, because the included file is
altering amount and content of the defined variables in the given scope.

You can also inc1ude file, which returns a value. This is extremely useful for handling configuration
arrays:

configuration.php

<?php

return [
'dbname' => 'my db',
'user' => 'admin',
'pass' => 'password',

1i
main.php

<?php
Sconfig = include 'configuration.php';

This approach will prevent the included file from polluting your current scope with changed or
added variables.

PHP Manual - Control Structures - Include

include & require can also be used to assign values to a variable when returned something by
file.

Example :

includel.php file :

<?php
Sa = "This is to be returned";

return $a;
7>

index.php file :

$value = include 'includel.php';

// Here, S$value = "This is to be returned"
return

The return Statement returns the program control to the calling function.

When return is called from within a function, the execution of the current function will end.

https://riptutorial.com/ 126

https://en.wikipedia.org/wiki/Code_smell
http://php.net/manual/en/function.include.php

function returnEndsFunctions ()

{
echo 'This is executed';
return;
echo 'This is not executed.';

When YOU run returnEndsFunctions () ; yOU'” get the OUtpUt This is executed,

When return is called from within a function with and argument, the execution of the current
function will end and the value of the argument will be returned to the calling function.

for

for lOOps are typically used when you have a piece of code which you want to repeat a given
number of times.

for ($i = 1; $i < 10; S$i++) {
echo $i;
Outputs: 123456789

For detailed information, see the Loops topic.
foreach
foreach IS @ construct, which enables you to iterate over arrays and objects easily.

Sarray = [1, 2, 31;
foreach ($array as S$value) {
echo $value;
Outputs: 123.
To use roreach l0Op with an object, it has to implement <=t interface.
When you iterate over associative arrays:
Sarray = ['color'=>'red'];

foreach ($array as S$key => $value) {
echo $key . ': ' . Svalue;

}

Outputs: color: red

For detailed information, see the Loops topic.

if elseif else

https://riptutorial.com/

127

http://www.riptutorial.com/php/example/7239/for
http://php.net/manual/en/class.iterator.php
http://www.riptutorial.com/php/example/7240/foreach

elseif

elseif cOmbines ir and e1se. The ir statement is extended to execute a different statement in
case the original it expression is not met. But, the alternative expression is only executed, when
the c1seif conditional expression is met.

The following code displays either "a is bigger than b", "a is equal to b" or "a is smaller than b":

if (sa > $b) {

echo "a is bigger than b";
} elseif (Sa == S$b) {

echo "a is equal to b";
} else {

echo "a is smaller than b";

Several elseif statements

You can use multiple elseif statements within the same if statement:

if (sa == 1) {
echo "a is One";

} elseif (Sa == 2) {
echo "a is Two";

} elseif ($Sa == 3) {
echo "a is Three";

} else {

echo "a is not One, not Two nor Three";

If
The if construct allows for conditional execution of code fragments.

if ($a > Sb) {
echo "a is bigger than b";

PHP Manual - Control Structures - If
switch

The switch structure performs the same function as a series of it statements, but can do the job in
fewer lines of code. The value to be tested, as defined in the switch Statement, is compared for
equality with the values in each of the case statements until a match is found and the code in that
block is executed. If no matching case statement is found, the code in the derauit block is
executed, if it exists.

Each block of code in a case Or default Statement should end with the vreax statement. This stops
the execution of the switch Structure and continues code execution immediately afterwards. If the

https://riptutorial.com/ 128

http://php.net/manual/en/control-structures.if.php

break Statement is omitted, the next case statement's code is executed, even if there is no match.
This can cause unexpected code execution if the vreak Statement is forgotten, but can also be
useful where multiple case statements need to share the same code.

switch ($colour) {
case "red":
echo "the colour is red";
break;
case "green":
case "blue":
echo "the colour is green or blue";
break;
case "yellow":
echo "the colour is yellow";
// note missing break, the next block will also be executed
case "black":
echo "the colour is black";
break;
default:
echo "the colour is something else";
break;

In addition to testing fixed values, the construct can also be coerced to test dynamic statements by
providing a boolean value to the switch Statement and any expression to the case statement. Keep
in mind the first matching value is used, so the following code will output "more than 100"

$i = 1048;

switch (true) {

case ($i > 0):
echo "more than 0";
break;

case ($i > 100):
echo "more than 100";
break;

case ($i > 1000):
echo "more than 1000";
break;

For possible issues with loose typing while using the switch construct, see Switch Surprises

Read Control Structures online: https://riptutorial.com/php/topic/2366/control-structures

https://riptutorial.com/ 129

http://www.riptutorial.com/php/example/9270/switch-surprises
https://riptutorial.com/php/topic/2366/control-structures

Introduction

An HTTP cookie is a small piece of data sent from a website and stored on the user's computer by
the user's web browser while the user is browsing.

Syntax
® bool setcookie(string $name [, string $value = "" [, int $expire = 0 [, string $path =
[, string $domain = "" [, bool $secure = false [, bool $httponly = false 111111)
Parameters

nn

name

value

expire

path

domain

secure

httponly

Remarks

The name of the cookie. This is also the key you can use to retrieve the value
from the s_cook1e super global. This is the only required parameter

The value to store in the cookie. This data is accessible to the browser so don't
store anything sensitive here.

A Unix timestamp representing when the cookie should expire. If set to zero the
cookie will expire at the end of the session. If set to a number less than the
current Unix timestamp the cookie will expire immediately.

The scope of the cookie. If set to / the cookie will be available within the entire
domain. If set to /some-path/ then the cookie will only be available in that path
and descendants of that path. Defaults to the current path of the file that the
cookie is being set in.

The domain or subdomain the cookie is available on. If set to the bare domain
stackoverflow.com then the cookie will be available to that domain and all
subdomains. If set to a subdomain meta.stackoverfiow.com then the cookie will be
available only on that subdomain, and all sub-subdomains.

When set to trur the cookie will only be set if a secure HTTPS connection exists
between the client and the server.

Specifies that the cookie should only be made available through the HTTP/S
protocol and should not be available to client side scripting languages like
JavaScript. Only available in PHP 5.2 or later.

https://riptutorial.com/

130

It is worth noting that mere invoking setcookie function doesn't just put given data into s_cook1r
superglobal array.

For example there is no point in doing:

setcookie ("user", "Tom", time() + 86400, "/");
var_dump (isset (S_COOKIE['user'])); // yields false or the previously set value

The value is not there yet, not until next page load. The function setcookie just says "with next http
connection tell the client (browser) to set this cookie". Then when the headers are sent to the
browser, they contain this cookie header. The browser then checks if the cookie hasn't expired
yet, and if not, then in http request it sends the cookie to the server and that's when PHP receives
it and puts the contents into s_cook1e array.

Examples

Setting a Cookie

A cookie is set using the setcookie () function. Since cookies are part of the HTTP header, you
must set any cookies before sending any output to the browser.

Example:

setcookie ("user", "Tom", time() + 86400, "/"); // check syntax for function params

Description:

» Creates a cookie with name user

* (Optional) Value of the cookie is Tom

» (Optional) Cookie will expire in 1 day (86400 seconds)

» (Optional) Cookie is available throughout the whole website /

» (Optional) Cookie is only sent over HTTPS

» (Optional) Cookie is not accessible to scripting languages such as JavaScript

A created or modified cookie can only be accessed on subsequent requests (where
path and domain Matches) as the superglobal s_cook1eis not populated with the new data
immediately.

Retrieving a Cookie

Retrieve and Output a Cookie Named user

The value of a cookie can be retrieved using the global variable s_cook1e. example if we have a
cookie named user We can retrieve it like this

echo $_COOKIE['user'];

https://riptutorial.com/ 131

Modifying a Cookie
The value of a cookie can be modified by resetting the cookie

setcookie ("user", "John", time() + 86400, "/"); // assuming there is a "user" cookie already

Cookies are part of the HTTP header, so setcookie () must be called before any output
is sent to the browser.

When modifying a cookie make sure the path and domain parameters of setcookie ()
matches the existing cookie or a new cookie will be created instead.

The value portion of the cookie will automatically be urlencoded when you send the
cookie, and when it is received, it is automatically decoded and assigned to a variable
by the same name as the cookie name

Checking if a Cookie is Set

Use the isset () function upon the superglobal s_cook1r variable to check if a cookie is set.

Example:

// PHP <7.0

if (isset ($_COOKIE['user']l)) {

// true, cookie is set

echo 'User is ' . $_COOKIE['user'];
else {

// false, cookie is not set
echo 'User is not logged in';

}

// PHP 7.0+
echo 'User is ' . $_COOKIE['user'] ?? 'User is not logged in';

Removing a Cookie

To remove a cookie, set the expiry timestamp to a time in the past. This triggers the browser's
removal mechanism:

setcookie('user', '', time() - 3600, '/');
When deleting a cookie make sure the path and domain parameters of setcookie ()

matches the cookie you're trying to delete or a new cookie, which expires immediately,
will be created.

It is also a good idea to unset the s_coox1r value in case the current page uses it:

unset ($_COOKIE['user']);

https://riptutorial.com/

132

Read Cookies online: https://riptutorial.com/php/topic/501/cookies

https://riptutorial.com/ 133

https://riptutorial.com/php/topic/501/cookies

C_hapter 24 Create PDF files in PHP

Examples

Getting Started with PDFlib
This code requires that you use the PDFIib library for it to function properly.

<?php
Spdf = pdf_new(); //initialize new object

pdf_begin_document ($pdf); //create new blank PDF
pdf_set_info ($pdf, "Author", "John Doe"); //Set info about your PDF
pdf_set_info (Spdf, "Title", "HelloWorld");
pdf_begin_page (Spdf, (72 * 8.5), (72 * 11)); //specify page width and height
Sfont = pdf_findfont (Spdf, "Times-Roman", "host", 0) //load a font
pdf_setfont (pdf, Sfont, 48); //set the font
pdf_set_text_pos ($pdf, 50, 700); //assign text position
pdf_show ($pdf, "Hello_World!"); //print text to assigned position
pdf_end_page ($pdf); //end the page
pdf_end_document (Spdf); //close the object

Sdocument = pdf_get_buffer ($pdf); //retrieve contents from buffer

Slength = strlen ($document); S$filename = "HelloWorld.pdf"; //Finds PDF length and assigns file
name

header ("Content-Type:application/pdf") ;
header ("Content-Length:" . $length);
header ("Content-Disposition:inline; filename=" . S$filename);

echo ($document); //Send document to browser

unset (Sdocument); pdf_delete ($pdf); //Clear Memory
7>

Read Create PDF files in PHP online: https://riptutorial.com/php/topic/4955/create-pdf-files-in-php

https://riptutorial.com/ 134

http://php.net/manual/en/ref.pdf.php
https://riptutorial.com/php/topic/4955/create-pdf-files-in-php

C_hapter 25:. Cryptography

Remarks

/* Base64 Encoded Encryption / Senc_data = base64_encode(openssl_encrypt (Sdata, Smethod,
Spassword, true, $iv)); / Decode and Decrypt */ $dec_data = base64_decode (
openssl_decrypt ($Senc_data, S$method, $password, true, $iv));

This way of doing the encryption and encoding would not work as presented as you are decrypting
the code before unencoding the base 64.

You would need to do this in the opposite order.

/This way instead/ $enc_data=base64_encode (openssl_encrypt ($data, $method, $pass, true, $iv));
Sdec_data=openssl_decrypt (base64_decode ($Senc_data), S$method, S$pass, true, $iv);

Examples

Symmetric Cipher

This example illustrates the AES 256 symmetric cipher in CBC mode. An initialization vector is
needed, so we generate one using an openssl function. The variable sstrong is used to determine
whether the IV generated was cryptographically strong.

Encryption

Smethod = "aes-256-cbc"; // cipher method
$iv_length = openssl_cipher_iv_length ($method); // obtain required IV length
Sstrong = false; // set to false for next line

$iv = openssl_random_pseudo_bytes (iv_length, Sstrong); // generate initialization vector

/* NOTE: The IV needs to be retrieved later, so store it in a database.
However, do not reuse the same IV to encrypt the data again. */

if (!$strong) { // throw exception if the IV is not cryptographically strong
throw new Exception ("IV not cryptographically strong!");
$data = "This is a message to be secured."; // Our secret message

Spass = "StackOverflOw"; // Our password

/* NOTE: Password should be submitted through POST over an HTTPS session.
Here, it's being stored in a variable for demonstration purposes. */

Senc_data = openssl_encrypt ($data, $method, $password, true, $iv); // Encrypt

D_ecryption

https://riptutorial.com/ 135

/* Retrieve the IV from the database and the password from a POST request */
Sdec_data = openssl_decrypt ($Senc_data, S$method, S$pass, true, $iv); // Decrypt

B_ase64 Encode & Decode

If the encrypted data needs to be sent or stored in printable text, then the base64_encode () and
base64_decode () functions should be used respectively.

/* Base64 Encoded Encryption */
Senc_data = base64_encode (openssl_encrypt ($data, S$method, $password, true, $iv));

/* Decode and Decrypt */
$Sdec_data = openssl_decrypt (base64_decode ($enc_data), S$method, S$password, true, $iv);

Symmetric Encryption and Decryption of large Files with OpenSSL

PHP lacks a build-in function to encrypt and decrypt large files. openssi_encrypt can be used to
encrypt strings, but loading a huge file into memory is a bad idea.

So we have to write a userland function doing that. This example uses the symmetric AES-128-
CBC algorithm to encrypt smaller chunks of a large file and writes them into another file.

Encrypt Files

/*'k
* Define the number of blocks that should be read from the source file for each chunk.
* For 'AES-128-CBC' each block consist of 16 bytes.
* So if we read 10,000 blocks we load 160kb into memory. You may adjust this value
* to read/write shorter or longer chunks.
v
define ('FILE_ENCRYPTION_BLOCKS', 10000);

/*'k

* Encrypt the passed file and saves the result in a new file with ".enc" as suffix.

* @param string $source Path to file that should be encrypted

* @param string S$key The key used for the encryption

* @param string $dest File name where the encryped file should be written to.

* @return string|false Returns the file name that has been created or FALSE if an error
occured

*/

function encryptFile ($source, S$key, S$dest)
{
Skey = substr (shal ($key, true), 0, 16);
$iv = openssl_random_pseudo_bytes (16) ;

Serror = false;
if ($fpOut = fopen (Sdest, 'w')) {
// Put the initialzation vector to the beginning of the file
fwrite ($fpOut, $iv);
if ($fpIn = fopen ($Ssource, 'rb')) {
while (!feof ($fpIn)) {

https://riptutorial.com/ 136

http://stackoverflow.com/a/33124706/1119601
http://stackoverflow.com/a/33124706/1119601

$plaintext = fread($fpIn, 16 * FILE_ENCRYPTION_BLOCKS) ;
Sciphertext = openssl_encrypt ($Splaintext, 'AES-128-CBC', S$key,
OPENSSL_RAW_DATA, $iv);
// Use the first 16 bytes of the ciphertext as the next initialization vector
$iv = substr ($Sciphertext, 0, 16);
fwrite ($fpOut, Sciphertext);
}
fclose ($fpln);
} else {
Serror = true;
}
fclose ($fpoOut) ;

} else {
Serror = true;
}
return Serror ? false : S$dest;

Decrypt Files

To decrypt files that have been encrypted with the above function you can use this function.

/**
* Dencrypt the passed file and saves the result in a new file, removing the
* last 4 characters from file name.
*
* @param string $source Path to file that should be decrypted
* @param string S$Skey The key used for the decryption (must be the same as for encryption)
* @param string $dest File name where the decryped file should be written to.
* @return string|false Returns the file name that has been created or FALSE if an error
occured
v
function decryptFile ($source, S$key, S$dest)
{
Skey = substr (shal ($key, true), 0, 16);

Serror = false;
if ($fpOut = fopen (Sdest, 'w')) {
if ($fpIn = fopen ($Ssource, 'rb')) {
// Get the initialzation vector from the beginning of the file
Siv = fread($fpIn, 16);
while (!feof ($fpIn)) {
Sciphertext = fread($fpIn, 16 * (FILE_ENCRYPTION_BLOCKS + 1)); // we have to
read one block more for decrypting than for encrypting
Splaintext = openssl_decrypt (Sciphertext, 'AES-128-CBC', S$key,
OPENSSL_RAW_DATA, $iv);
// Use the first 16 bytes of the ciphertext as the next initialization vector
Siv = substr (Sciphertext, 0, 16);
fwrite ($fpOut, S$plaintext);
}
fclose ($fpln);
} else {
Serror = true;
}
fclose ($fpOut) ;
} else {
Serror = true;

https://riptutorial.com/ 137

}

return Serror ? false : S$dest;

How to use

If you need a small snippet to see how this works or to test the above functions, look at the
following code.

SfileName = _ DIR__.'/testfile.txt';

Skey = 'my secret key';

file_put_contents ($fileName, 'Hello World, here I am.');
encryptFile ($fileName, S$key, $fileName . '.enc');
decryptFile ($fileName . '.enc', S$key, S$fileName . '.dec');

This will create three files:

1. testfile.txt with the plain text
2. testfile.txt.enc with the encrypted file
3. testfile.txt.dec with the decrypted file. This should have the same content as testfile.txt

Read Cryptography online: https://riptutorial.com/php/topic/5794/cryptography

https://riptutorial.com/

138

https://riptutorial.com/php/topic/5794/cryptography

C_hapter 26: Datetime Class

Examples

getTimestamp
getTimestemp IS @ UNIX representation of a datetime object.

Sdate = new DateTime () ;
echo $date->getTimestamp () ;

this will out put an integer indication the seconds that have elapsed since 00:00:00 UTC,
Thursday, 1 January 1970.

setDate
setbate Sets the date in a DateTime object.

$date = new DateTime () ;
Sdate->setDate (2016, 7, 25);

this example sets the date to be the twenty-fifth of July, 2015, it will produce the following result:

2016-07-25 17:52:15.819442

Add or Subtract Date Intervals

We can use the class Datelnterval to add or subtract some interval in a DateTime object.

See the example below, where we are adding an interval of 7 days and printing a message on the
screen:

Snow = new DateTime ();// empty argument returns the current date

Sinterval = new DatelInterval ('P7D');//this objet represents a 7 days interval

$lastDay = S$now->add ($interval); //this will return a DateTime object

SformatedLastDay = $lastDay->format ('Y-m-d');//this method format the DateTime object and
returns a String

echo "Samara says: Seven Days. You'll be happy on S$formatedLastDay.";

This will output (running on Aug 1st, 2016):
Samara says: Seven Days. You'll be happy on 2016-08-08.

We can use the sub method in a similar way to subtract dates

Snow—->sub ($interval) ;
echo "Samara says: Seven Days. You were happy last on $formatedLastDay.";

https://riptutorial.com/ 139

http://php.net/manual/pt_BR/class.dateinterval.php

This will output (running on Aug 1st, 2016):

Samara says: Seven Days. You were happy last on 2016-07-25.
Create DateTime from custom format
PHP is able to parse a number of date formats. If you want to parse a non-standard format, or if
you want your code to explicitly state the format to be used, then you can use the static
DateTime: :createFromFormat Method:

Object oriented style

Sformat = "Y,m,d";
Stime = "2009,2,26";
Sdate = DateTime: :createFromFormat ($format, S$time);

Procedural style

Sformat = "Y,m,d";
Stime = "2009,2,26";
Sdate = date_create_from_format ($Sformat, S$Stime);

Printing DateTimes

PHP 4+ supplies a method, format that converts a DateTime object into a string with a desired
format. According to PHP Manual, this is the object oriented function:

public string DateTime::format (string S$format)

The function date() takes one parameters - a format, which is a string

Format

The format is a string, and uses single characters to define the format:

 Y: four digit representation of the year (eg: 2016)

y: two digit representation of the year (eg: 16)

m: month, as a number (01 to 12)

M: month, as three letters (Jan, Feb, Mar, etc)

j: day of the month, with no leading zeroes (1 to 31)
D: day of the week, as three letters (Mon, Tue, Wed, etc)
h: hour (12-hour format) (01 to 12)

H: hour (24-hour format) (00 to 23)

A: either AM or PM

i: minute, with leading zeroes (00 to 59)

s: second, with leading zeroes (00 to 59)

The complete list can be found here

https://riptutorial.com/ 140

https://secure.php.net/manual/en/datetime.formats.php
https://php.net/manual/en/datetime.createfromformat.php
http://php.net/manual/en/function.date.php

Usage

These characters can be used in various combinations to display times in virtually any format.
Here are some examples:

Sdate = new DateTime ('2000-05-26T13:30:20'"); /* Friday, May 26, 2000 at 1:30:20 PM */

Sdate—>format ("H:i") ;
/* Returns 13:30 */

Sdate->format ("H 1 s");
/* Returns 13 30 20 */

Sdate->format ("h:i:s A");
/* Returns 01:30:20 PM */

Sdate->format ("j/m/Y") ;
/* Returns 26/05/2000 */

$date->format ("D, M j 'y — h:i A");
/* Returns Fri, May 26 '00 — 01:30 PM */

Procedural

The procedural format is similar:
Object-Oriented

Sdate->format (Sformat)

Procedural Equivalent

date_format ($Sdate, S$format)

Create Immutable version of DateTime from Mutable prior PHP 5.6
To create \pateTimeImmutable IN PHP 5.6+ use:

\DateTimeImmutable: :createFromMutable ($concrete) ;
Prior PHP 5.6 you can use:

\DateTimeImmutable: :createFromFormat (\DateTime::15S08601, Smutable->format (\DateTime::IS08601),
Smutable->getTimezone ()) ;

Read Datetime Class online: https://riptutorial.com/php/topic/3684/datetime-class

https://riptutorial.com/ 141

https://riptutorial.com/php/topic/3684/datetime-class

C_hapter 27: Debugging

Examples

Dumping variables

The -+ «ump function allows you to dump the contents of a variable (type and value) for
debugging.

Example:

Sarray = [3.7, "string", 10, ["hello" => "world"], false, new DateTime()];

var_dump ($Sarray) ;

Output:

array (6) {

[0]=>

float (3.7)

[1]=>

string(6) "string"

[2]=>

int (10)

[3]=>

array (1) {
["hello"]=>
string(5) "world"

}

[4]=>

bool (false)

[5]=>

object (DateTime) #1 (3) {
["date"]=>
string(26) "2016-07-24 13:51:07.000000"
["timezone_type"]=>
int (3)
["timezone"]=>
string (13) "Europe/Berlin"

Displaying errors

If you want PHP to display runtime errors on the page, you have to enable «:sp12y crrors, eitherin
the php.ini Or using the in: s<c function.

You can choose which errors to display, with the error_reporting (Or in the ini) function, which
accepts =+ constants, combined using bitwise operators.

PHP can display errors in text or HTML format, depending on the w1 crrors Setting.

https://riptutorial.com/ 142

http://php.net/manual/en/function.var-dump.php
http://php.net/manual/en/errorfunc.configuration.php#ini.display-errors
http://php.net/manual/en/function.ini-set.php
http://php.net/manual/en/errorfunc.constants.php
http://php.net/manual/en/errorfunc.constants.php
http://php.net/manual/en/language.operators.bitwise.php
http://php.net/manual/en/errorfunc.configuration.php#ini.html-errors

Example:

ini_set ("display_errors", true);
ini_set ("html_errors", false); // Display errors in plain text
error_reporting (E_ALL & ~E_USER_NOTICE); // Display everything except E_USER_NOTICE

trigger_error ("Pointless error"); // E_USER_NOTICE
echo S$nonexistentVariable; // E_NOTICE
nonexistentFunction(); // E_ERROR

Plain text output: (HTML format differs between implementations)

Notice: Undefined variable: nonexistentVariable in /path/to/file.php on line 7

Fatal error: Uncaught Error: Call to undefined function nonexistentFunction() in
/path/to/file.php:8
Stack trace:
#0 {main}
thrown in /path/to/file.php on line 8

NOTE: If you have error reporting disabled in php.ini and enable it during runtime,
some errors (such as parse errors) won't be displayed, because they occured before
the runtime setting was applied.

The common way to handle error_reporting iS to enable it fully with &_arr constant during the
development, and to disable publicly displaying it with disp1ay_errors On production stage to hide
the internals of your scripts.

phpinfo()

Warning

It is imperative that phpinfo IS ONly used in a development environment. Never release code
containing phpinfo into a production environment

Introduction

Having said that, it can be a useful tool in understanding the PHP environment (OS, configuration,
versions, paths, modules) in which you are working, especially when chasing a bug. It is a simple
built in function:

phpinfo () ;

It has one parameter swhat that allows the output to be customized. The default is inro_arr,
causing it to display all information and is commonly used during development to see the current
state of PHP.

You can pass the parameter ruro_» constants, combined with bitwise operators to see a

https://riptutorial.com/ 143

http://php.net/manual/en/function.phpinfo.php#refsect1-function.phpinfo-parameters
http://php.net/manual/en/function.phpinfo.php#refsect1-function.phpinfo-parameters

customized list.

You can run it in the browser for a nicely formatted detailed look. It also works in PHP CLI, where
you can pipe it into 1ess for easier view.

Example

phpinfo (INFO_CONFIGURATION | INFO_ENVIRONMENT | INFO_VARIABLES) ;
This will display a list of PHP directives (ini 5=t), environment (s =nv) and predefined variables.
Xdebug

Xdebug is a PHP extension which provides debugging and profiling capabilities.
It uses the DBGp debugging protocol.

There are some nice features in this tool:

* stack traces on errors

* maximum nesting level protection and time tracking

* helpful replacement of standard var_dump () function for displaying variables

« allows to log all function calls, including parameters and return values to a file in different
formats

» code coverage analysis

* profiling information

» remote debugging (provides interface for debugger clients that interact with running PHP
scripts)

As you can see this extension is perfectly suited for development environment. Especially remote
debugging feature can help you to debug your php code without numerous var_dump's and use
normal debugging process as in c++ Or Java languages.

Usually installing of this extension is very simple:
pecl install xdebug # install from pecl/pear

And activate it into your php.ini:
zend_extension="/usr/local/php/modules/xdebug.so"

In more complicated cases see this instructions

When you use this tool you should remember that:
XDebug is not suitable for production environments

phpversion()

https://riptutorial.com/ 144

http://php.net/manual/en/function.ini-get.php
http://php.net/manual/en/reserved.variables.environment.php
http://php.net/manual/en/language.variables.predefined.php
https://xdebug.org
https://xdebug.org/docs/install
http://stackoverflow.com/a/3522356/2253302

Introduction

When working with various libraries and their associated requirements, it is often necessary to
know the version of current PHP parser or one of it's packages.

This function accepts a single optional parameter in the form of extension name:

phpversion ('extension'). If the extension in question is installed, the function will return a string
containing version value. However, if the extension not installed rarse will be returned. If the
extension name is not provided, the function will return the version of PHP parser itself.

Example

print "Current PHP version: " . phpversion();
// Current PHP version: 7.0.8

print "Current cURL version: " . phpversion('curl');
// Current cURL version: 7.0.8
// or

// false, no printed output if package is missing

Error Reporting (use them both)

// this sets the configuration option for your environment
ini_set ('display_errors', '1l');

//-1 will allow all errors to be reported
error_reporting(-1);

Read Debugging online: https://riptutorial.com/php/topic/3339/debugging

https://riptutorial.com/ 145

https://riptutorial.com/php/topic/3339/debugging

C_hapter 28: Dependency Injection

Introduction

Dependency Injection (DI) is a fancy term for "passing things in". All it really means is passing the
dependencies of an object via the constructor and / or setters instead of creating them upon object
creation inside the object. Dependency Injection might also refer to Dependency Injection
Containers which automate the construction and injection.

Examples

Constructor Injection

Objects will often depend on other objects. Instead of creating the dependency in the constructor,
the dependency should be passed into the constructor as a parameter. This ensures there is not
tight coupling between the objects, and enables changing the dependency upon class
instantiation. This has a number of benefits, including making code easier to read by making the
dependencies explicit, as well as making testing simpler since the dependencies can be switched
out and mocked more easily.

In the following example, component Will depend on an instance of rogger, but it doesn't create one.
It requires one to be passed as argument to the constructor instead.

interface Logger {
public function log(string Smessage);

}

class Component {
private $logger;

public function __construct (Logger S$logger) {
Sthis->logger = $logger;
}

Without dependency injection, the code would probably look similar to:

class Component {
private $logger;

public function __construct () {
$this->logger = new FoolLogger () ;
}

Using new to create new objects in the constructor indicates that dependency injection was not
used (or was used incompletely), and that the code is tightly coupled. It is also a sign that the code
is incompletely tested or may have brittle tests that make incorrect assumptions about program

https://riptutorial.com/ 146

state.

In the above example, where we are using dependency injection instead, we could easily change
to a different Logger if doing so became necessary. For example, we might use a Logger
implementation that logs to a different location, or that uses a different logging format, or that logs
to the database instead of to a file.

Setter Injection
Dependencies can also be injected by setters.

interface Logger {
public function log(Smessage);

}

class Component {
private $logger;
private S$databaseConnection;

public function ___construct (DatabaseConnection $databaseConnection) {
Sthis—->databaseConnection = $databaseConnection;

}

public function setLogger (Logger $logger) {
Sthis->logger = $logger;
}

public function core() {
Sthis->logSave () ;
return Sthis->databaseConnection—->save ($Sthis);

}

public function logSave () {
if ($this->logger) {
Sthis->logger—>log('saving');

This is especially interesting when the core functionality of the class does not rely on the
dependency to work.

Here, the only needed dependency is the patabaseconnection SO it's in the constructor. The rogger
dependency is optional and thus does not need to be part of the constructor, making the class
easier to use.

Note that when using setter injection, it's better to extend the functionality rather than replacing it.
When setting a dependency, there's nothing confirming that the dependency won't change at
some point, which could lead in unexpected results. For example, a ri1eLogger cOuld be set at first,
and then a vaiiLogger could be set. This breaks encapsulation and makes logs hard to find,
because we're replacing the dependency.

To prevent this, we should add a dependency with setter injection, like so :

https://riptutorial.com/ 147

interface Logger {
public function log(Smessage);

class Component {
private $loggers = array/();
private S$databaseConnection;

public function __construct (DatabaseConnection $databaseConnection) {
Sthis->databaseConnection = $databaseConnection;

public function addLogger (Logger $logger) {

Sthis->loggers|[] = $logger;

public function core() {
Sthis->logSave () ;
return Sthis->databaseConnection—->save ($Sthis);

public function logSave () {
foreach ($this->loggers as $logger) {
$logger->log('saving') ;

Like this, whenever we'll use the core functionality, it won't break even if there is no logger
dependency added, and any logger added will be used even though another logger could've been
added. We're extending functionality instead of replacing it.

Container Injection

Dependency Injection (DI) in the context of using a Dependency Injection Container (DIC) can be
seen as a superset of constructor injection. A DIC will typically analyze a class constructor's
typehints and resolve its needs, effectively injecting the dependencies needed for the instance
execution.

The exact implementation goes well beyond the scope of this document but at its very heart, a DIC
relies on using the signature of a class...

namespace Documentation;

class Example
{

private S$meaning;
public function __construct (Meaning S$meaning)

{

Sthis->meaning = $meaning;

... to automatically instantiate it, relying most of the time on an autoloading system.

https://riptutorial.com/ 148

http://www.riptutorial.com/php/example/13197/autoloading

// older PHP versions
Scontainer—->make ('Documentation\Example') ;

// since PHP 5.5
Scontainer—->make (\Documentation\Example: :class) ;

If you are using PHP in version at least 5.5 and want to get a name of a class in a way that's being shown above, the
correct way is the second approach. That way you can quickly find usages of the class using modern IDEs, which will
greatly help you with potential refactoring. You do not want to rely on regular strings.

In this case, the pocumentation\Example KNOWS it Nneeds a meaning, and a DIC would in turn
instantiate a veaning type. The concrete implementation need not depend on the consuming
instance.

Instead, we set rules in the container, prior to object creation, that instructs how specific types
should be instantiated if need be.

This has a number of advantages, as a DIC can

» Share common instances
» Provide a factory to resolve a type signature
* Resolve an interface signature

If we define rules about how specific type needs to be managed we can achieve fine control over
which types are shared, instantiated, or created from a factory.

Read Dependency Injection online: https://riptutorial.com/php/topic/779/dependency-injection

https://riptutorial.com/ 149

https://riptutorial.com/php/topic/779/dependency-injection

C_hapter 29: Design Patterns

Introduction

This topic provides examples of well known design patterns implemented in PHP.
Examples

Method Chaining in PHP

Method Chaining is a technique explained in Martin Fowler's book Domain Specific Languages.
Method Chaining is summarized as

Makes modifier methods return the host object, so that multiple modifiers can be
invoked in a single expression.

Consider this non-chaining/regular piece of code (ported to PHP from the aforementioned book)

ShardDrive = new HardDrive;
ShardDrive->setCapacity (150) ;
ShardDrive->external () ;
ShardDrive->setSpeed (7200) ;

Method Chaining would allow you to write the above statements in a more compact way:

ShardDrive = (new HardDrive)
->setCapacity (150)
—>external ()

—>setSpeed (7200) ;

All you need to do for this to work is to return stnis in the methods you want to chain from:

class HardDrive {
protected $isExternal =
protected $capacity = 0;
protected $speed = 0;

public function external ($isExternal = true) {
Sthis->isExternal = $isExternal;
return $this; // returns the current class instance to allow method chaining

public function setCapacity (Scapacity) {
Sthis->capacity = S$capacity;
return $this; // returns the current class instance to allow method chaining

public function setSpeed ($speed) {
Sthis—->speed = $speed;
return $this; // returns the current class instance to allow method chaining

https://riptutorial.com/ 150

http://rads.stackoverflow.com/amzn/click/0321712943
http://rads.stackoverflow.com/amzn/click/0321712943
http://martinfowler.com/dslCatalog/methodChaining.html
http://martinfowler.com/dslCatalog/methodChaining.html

Wen to use it

The primary use cases for utilizing Method Chaining is when building internal Domain Specific
Languages. Method Chaining is a building block in Expression Builders and Fluent Interfaces. It is
not synonymous with those, though. Method Chaining merely enables those. Quoting Fowler:

I've also noticed a common misconception - many people seem to equate fluent
interfaces with Method Chaining. Certainly chaining is a common technique to use with
fluent interfaces, but true fluency is much more than that.

With that said, using Method Chaining just for the sake of avoiding writing the host object is
considered a code smell by many. It makes for unobvious APIs, especially when mixing with non-
chaining APlIs.

mditional Notes

Command Query Separation

Command Query Separation is a design principle brought forth by Bertrand Meyer. It states that
methods mutating state (commands) should not return anything, whereas methods returning
something (queries) should not mutate state. This makes it easier to reason about the system.
Method Chaining violates this principle because we are mutating state and returning something.

Getters

When making use of classes which implement method chaining, pay particular attention when
calling getter methods (that is, methods which return something other than stnis). Since getters
must return a value other than stnis, chaining an additional method onto a getter makes the call
operate on the gotten value, not on the original object. While there are some use cases for
chained getters, they may make code less readable.

Law of Demeter and impact on testing

Method Chaining as presented above does not violate Law of Demeter. Nor does it impact testing.
That is because we are returning the host instance and not some collaborator. It's a common
misconception stemming from people confusing mere Method Chaining with Fluent Interfaces and
Expression Builders. It is only when Method Chaining returns other objects than the host object
that you violate Law of Demeter and end up with Mock fests in your tests.

https://riptutorial.com/ 151

http://martinfowler.com/bliki/ExpressionBuilder.html
http://martinfowler.com/bliki/FluentInterface.html
http://stackoverflow.com/a/17940086/208809
http://stackoverflow.com/a/17940086/208809
http://martinfowler.com/bliki/CodeSmell.html
http://martinfowler.com/bliki/CommandQuerySeparation.html
https://en.wikipedia.org/wiki/Law_of_Demeter

Read Design Patterns online: https://riptutorial.com/php/topic/9992/design-patterns

https://riptutorial.com/ 152

https://riptutorial.com/php/topic/9992/design-patterns

C_hapter 30: Docker deployment

Introduction

Docker is a very popular container solution being used widely for deploying code in production
environments. It makes it easier to Manage and Scale web-applications and microservices.

Remarks

This document assumes that docker is installed and the daemon running. You can refer to Docker
installation to check on how to install the same.

Examples

Get docker image for php
In order to deploy the application on docker, first we need to get the image from registry.

docker pull php

This will get you the latest version of image from official php repository. Generally speaking, pur is
usually used to deploy web-applications so we need an http server to go with the image. php:7.0-
apache Image comes pre-installed with apache to make deployment hastle free.

Writing dockerfile

pockerfile IS USed to configure the custom image that we will be building with the web-application
codes. Create a new file pockerrile in the root folder of project and then put the following contents
in the same

FROM php:7.0-apache

COPY /etc/php/php.ini /usr/local/etc/php/
COPY . /var/www/html/

EXPOSE 80

The first line is pretty straight forward and is used to describe which image should be used to build
out new image. The same could be changed to any other specific version of PHP from the registry.

Second line is simply to upload php. ini file to our image. You can always change that file to some
other custom file location.

The third line would copy the codes in current directory to /var/www/htm1 Which is our webroot.
Remember /var/www/html iNside the image.

The last line would simply open up port 80 inside the docker container.

https://riptutorial.com/ 153

http://www.docker.com
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/

Ignoring files

In some instances there might be some files that you don't want on server like environment
configuration etc. Let us assume that we have our environment in .env. Now in order to ignore this
file, we can simply add it to .dockerignore in the root folder of our codebase.

Building image

Building image is not something specific to php, but in order to build the image that we described
above, we can simply use

docker build -t <Image name> .
Once the image is built, you can verify the same using
docker images
Which would list out all the images installed in your system.
Starting application container

Once we have an image ready, we can start and serve the same. In order to create a container
from the image, use

docker run -p 80:80 -d <Image name>
In the command above - s0:80 would forward port so of your server to port so of the container.

The flag -a tells that the container should run as background job. The final specifies which image
should be used to build the container.

Checking container

In order to check running containers, simply use

docker ps

This will list out all the containers running on docker daemon.

Application logs
Logs are very important to debug the application. In order to check on them use

docker logs <Container id>

Read Docker deployment online: https://riptutorial.com/php/topic/9327/docker-deployment

https://riptutorial.com/ 154

https://riptutorial.com/php/topic/9327/docker-deployment

C_hapter 31: Exception Handling and Error
Reporting

Examples

Setting error reporting and where to display them

If it's not already done in php.ini, error reporting can be set dynamically and should be set to allow

most errors to be shown:

Syntax

int error_reporting ([int $level])

Examples

// should always be used prior to 5.4
error_reporting (E_ALL) ;

// -1 will show every possible error, even when new levels and constants are added
// in future PHP versions. E_ALL does the same up to 5.4.

error_reporting (-1);

// without notices
error_reporting(E_ALL & ~E_NOTICE);

// only warnings and notices.
// for the sake of example, one shouldn't report only those
error_reporting (E_WARNING | E_NOTICE) ;

errors will be logged by default by php, normally in a error.log file at the same level than the
running script.

in development environment, one can also show them on screen:
ini_set ('display_errors', 1);
in production however, one should
ini_set ('display_errors', 0);
and show a friendly problem message through the use of an Exception or Error handler.

Exception and Error handling

try/catch

https://riptutorial.com/

155

try..catch blocks can be used to control the flow of a program where Exceptions may be thrown.
They can be caught and handled gracefully rather than letting PHP stop when one is encountered:

try {
// Do a bunch of things...
throw new Exception('My test exception!');
} catch (Exception S$ex) {
// Your logic failed. What do you want to do about that? Log it:
file_put_contents ('my_error_log.txt', $ex->getMessage (), FILE_APPEND);

The above example would catch the Exception thrown in the try block and log it's message ("My
test exception!”) to a text file.

Catching different Exception types

You can implement multiple catch statements for different types of exceptions to be handled in
different ways, for example:

try {

throw new InvalidArgumentException ('Argument #1 must be an integer!');
} catch (InvalidArgumentException S$ex) {

var_dump ('Invalid argument exception caught: ' . $ex->getMessage());
} catch (Exception $ex) {

var_dump ('Standard exception caught: ' . $ex->getMessage());

In the above example the first catcnh will be used since it matches first in the order of execution. If
you swapped the order of the catch Statements around, the exception catcher would execute first.

Similarly, if you were to throw an vnexpectedvaluerxcept ion instead you would see the second
handler for a standard exception being used.

finally

If you need something to be done after either a try or a catcn has finished running, you can use a
finally Statement:

try {
throw new Exception('Hello world');
} catch (Exception $e) {

echo 'Uh oh! ' . $e->getMessage () ;
} finally {
echo " — I'm finished now - home time!";

}

The above example would output the following:

Uh oh! Hello world - I'm finished now - home time!

https://riptutorial.com/ 156

http://php.net/manual/en/language.exceptions.php
http://php.net/manual/en/class.unexpectedvalueexception.php

throwable

In PHP 7 we see the introduction of the th-owanie interface, which =++o- as well as zxception
implements. This adds a service contract level between exceptions in PHP 7, and allows you to

implement the interface for your own custom exceptions:

Shandler = function (\Throwable S$Sex) {

ti

Smsg = "[{$Sex->getCode()} 1 {$ex->getTraceAsString()}";
mail ('admin@server.com', $ex->getMessage (), $msg);
echo myNiceErrorMessageFunction () ;

set_exception_handler ($handler) ;

set_error_handler (Shandler) ;

Prior to PHP 7 you can simply typehint exception Since as of PHP 5 all exception classes extend it.

Logging fatal errors

In PHP, a fatal error is a kind of error that cannot be caught, that is, after experiencing a fatal error
a program does not resume. However, to log this error or somehow handle the crash you can use
register_shutdown_function tO register shutdown handler.

function fatalErrorHandler () {

// Let's get last error that was fatal.
Serror = error_get_last();

// This is error-only handler for example purposes; no error means that
// there were no error and shutdown was proper. Also ensure it will handle
// only fatal errors.
if (null === S$error || E_ERROR != Serror['type'l) {
return;

// Log last error to a log file.
// let's naively assume that logs are in the folder inside the app folder.
SlogFile = fopen("./app/logs/error.log", "a+");

// Get useful info out of error.

Stype = Serror["type"];
Sfile = Serror["file"];
Sline = Serror["line"];
Smessage = Serror|["message"]
fprintf (

SlogFile,

"[%$s] %s: %s in %s:%d\n",
date ("Y-m-d H:i:s8"),
Stype,

Smessage,

Sfile,

$line) ;

fclose ($logFile);

https://riptutorial.com/

157

http://php.net/manual/en/class.throwable.php
http://php.net/manual/en/class.error.php
http://php.net/manual/en/class.exception.php

register_shutdown_function('fatalErrorHandler');

Reference:

« http://php.net/manual/en/function.register-shutdown-function.php
* http://php.net/manual/en/function.error-get-last.php
 http://php.net/manual/en/errorfunc.constants.php

Read Exception Handling and Error Reporting online:
https://riptutorial.com/php/topic/391/exception-handling-and-error-reporting

https://riptutorial.com/ 158

http://php.net/manual/en/function.register-shutdown-function.php
http://php.net/manual/en/function.error-get-last.php
http://php.net/manual/en/errorfunc.constants.php
https://riptutorial.com/php/topic/391/exception-handling-and-error-reporting

C_hapter 32: Executing Upon an Array

Examples

Applying a function to each element of an array
To apply a function to every item in an array, use array_map (). This will return a new array.

Sarray = array(1,2,3,4,5);
//each array item is iterated over and gets stored in the function parameter.
SnewArray = array_map (function ($item) {
return $item + 1;
}, Sarray);

SnewArray now is array(2,3,4,5,6) ;.

Instead of using an anonymous function, you could use a named function. The above could be
written like:

function addOne ($item) {
return S$item + 1;

}

Sarray = array(l, 2, 3, 4, 5);
SnewArray = array_map ('addOne', S$array);

If the named function is a class method the call of the function has to include a reference to a
class object the method belongs to:

class Example {
public function addOne ($item) {
return $item + 1;

}

public function doCalculation() {
Sarray = array(l, 2, 3, 4, 5);
$newArray = array_map (array($this, 'addOne'), $array);

Another way to apply a function to every item in an array is array_walk () and
array_walk_recursive (). The callback passed into these functions take both the key/index and
value of each array item. These functions will not return a new array, instead a boolean for
success. For example, to print every element in a simple array:

Sarray = array(l, 2, 3, 4, 5);
array_walk ($Sarray, function ($Svalue, S$key) {
echo S$value . ' ';

}) i
// prints "1 2 3 4 5"

https://riptutorial.com/ 159

http://www.riptutorial.com/php/topic/205/functional-programming

The value parameter of the callback may be passed by reference, allowing you to change the
value directly in the original array:

Sarray = array(l, 2, 3, 4, 5);

array_walk ($Sarray, function (&Svalue, S$key) {
Svalue++;

}) i

Sarray now is array(2,3,4,5,6);
For nested arrays, array_walk_recursive () Will go deeper into each sub-array:

Sarray = array(l, array(2, 3, array(4, 5), 6);
array_walk_recursive ($Sarray, function ($value, S$key) {
echo S$value . ' ';

1)
// prints "1 2 3 4 5 6"

Note: array_walk and array_walk_recursive let you change the value of array items, but not the
keys. Passing the keys by reference into the callback is valid but has no effect.

Split array into chunks

array chunk() splits an array into chunks

Let's say we've following single dimensional array,
$input_array = array('a', 'b', 'c', 'd', 'e');
Now using array_chunk() on above PHP array,
Soutput_array = array_chunk (S$Sinput_array, 2);
Above code will make chunks of 2 array elements and create a multidimensional array as follow.

Array

(
[0] => Array

https://riptutorial.com/ 160

http://php.net/manual/en/function.array-chunk.php

If all the elements of the array is not evenly divided by the chunk size, last element of the output
array will be remaining elements.

If we pass second argument as less then 1 then E_ WARNING will be thrown and output array will
be NULL.

$array (array) Input array, the array to work on

$size (int) Size of each chunk (Integer value)

$preserve_keys (boolean) If you want output array to preserve the keys set it to TRUE
(optional) otherwise FALSE.

Imploding an array into string
implode () cOmbines all the array values but looses all the key info:

Sarr = [Ya' => "AA", 'b' => "BB", 'c' => "CC"],‘

echo implode (" ", $arr); // AA BB CC

Imploding keys can be done using array_keys () call:

$arr = [vav => "AA", 'h' => "BB", o' => "CC"];

echo implode (" ", array_keys($arr)); // a b c

Imploding keys with values is more complex but can be done using functional style:

$arr = [vav => HAA"’ ' => "BBH, o' o=> "CC"];
echo implode (" ", array_map (function ($Skey, $val) {
return "S$key:S$val"; // function that glues key to the value

}, array_keys(Sarr), S$arr));

// Output: a:AA b:BB c:CC

array _reduce

array_reduce feduces array into a single value. Basically, The array_reduce Will go through every
item with the result from last iteration and produce new value to the next iteration.

leage:array_reduce (Sarray, function(Scarry, $item){...}, Sdefaul_value_of_first_carry)

https://riptutorial.com/ 161

» S$carry is the result from the last round of iteration.
 S$item is the value of current position in the array.

Sum of array

Sresult = array_reduce([l, 2, 3, 4, 5], function($Scarry, S$Sitem) {
return $carry + S$item;
}) i

result;1s

The largest number in array

Sresult = array_reduce([10, 23, 211, 34, 25], function($carry, $item) {
return $item > S$carry ? S$item : S$Scarry;

)i

result:211

Is all item more than 100

Sresult = array_reduce([101, 230, 210, 341, 251], function($carry, $item) {
return Scarry && S$Sitem > 100;
}, true); //default value must set true

result:t rue

Is any item less than 100

Sresult = array_reduce([101, 230, 21, 341, 251], function($carry, Sitem) {
return S$carry || S$item < 100;
}, false);//default value must set false

result:t rue

Like implode($array, $piece)

Sresult = array_reduce(["hello", "world", "PHP", "language"], function($carry, S$item) {
return !S$carry ? Sitem : S$carry . "-" . Sitem ;

)i

reSL”t"hello—world—PHP—language"

if make a implode method, the source code will be :

function implode_method ($Sarray, Spiece) {
return array_reduce ($array, function($Scarry, S$item) use (Spiece) {
return !$carry ? S$item : (Scarry . Spiece . S$item);
}) i

Sresult = implode_method(["hello", "world", "PHP", "language"], "-");

https://riptutorial.com/

162

reSL”t"hello—world—PHP—language"
"Destructuring” arrays using list()
Use list() to quick assign a list of variable values into an array. See also compact()

// Assigns to S$a, $b and $c the values of their respective array elements in Sarray
with keys numbered from zero
list ($a, $b, $c) = Sarray;

With PHP 7.1 (currently in beta) you will be able to use short list syntax:

// Assigns to $a, $b and $c the values of their respective array elements in S$Sarray with keys
numbered from zero
[Sa, $b, $c] = Sarray;

// Assigns to $a, $b and $c the values of the array elements in S$array with the keys "a", "b"
and "c", respectively
["a" => $a, "b" => $b, "c" => $c] = Sarray;

Push a Value on an Array

There are two ways to push an element to an array: array_push and sarray[] =

The array push is used like this:

Sarray = [1,2,3]1;
SnewArraySize = array_push ($array, 5, 6); // The method returns the new size of the array
print_r($array); // Array is passed by reference, therefore the original array is modified to

contain the new elements

This code will print:

Array
(
[0] => 1
[1] => 2
[2] => 3
[3] => 5
[4] => 6
)
sarray[] = IS used like this:
Sarray = [1,2,3];
Sarray[] = 5;
Sarray[] = 6;

print_r (Sarray);

This code will print:

https://riptutorial.com/ 163

http://php.net/manual/en/function.list.php
http://www.riptutorial.com/php/example/15737/creating-an-array-of-variables
https://wiki.php.net/rfc/short_list_syntax
http://php.net/manual/fr/function.array-push.php

VvV Vv

\Y

L |
Vv Vv
o U W N P

Read Executing Upon an Array online: https://riptutorial.com/php/topic/6826/executing-upon-an-
array

https://riptutorial.com/ 164

https://riptutorial.com/php/topic/6826/executing-upon-an-array
https://riptutorial.com/php/topic/6826/executing-upon-an-array

Chapter 33: File handling

Syntax

* int readfile (string $filename [, bool $use_include_path = false [, resource $context]])

Parameters
filename The filename being read.

You can use the optional second parameter and set it to TRUE, if you

use_include_path o .
- P want to search for the file in the include_path, too.

context A context stream resource.

Remarks

Filename syntax

Most filenames passed to functions in this topic are:

1. Strings in nature.

» File names can be passed directly. If values of other types are passed, they are cast to
string. This is especially useful with spiriiernfo, Which is the value in the iteration of
DirectoryIterator.

2. Relative or absolute.

* They may be absolute. On Unix-like systems, absolute paths start with /, e.g.

/home /user/file.txt, While on Windows, absolute paths start with the drive, e.g.
C:/Users/user/file.txt

» They may also be relative, which is dependent on the value of ¢t c»a and subject to

change by chair.
3. Accept protocols.

* They may begin with scheme:// to specify the protocol wrapper to manage with. For
example, file_get_contents ("http://example.com") retrieves content from
http://example.com.

4. Slash-compatible.

* While the prrecTorY_separaTor 0N Windows is a backslash, and the system returns
backslashes for paths by default, the developer can still use / as the directory
separator. Therefore, for compatibility, developers can use / as directory separators on
all systems, but be aware that the values returned by the functions (e.g. reaipath) may
contain backslashes.

https://riptutorial.com/ 165

http://php.net/getcwd
http://php.net/chdir
http://example.com

Examples

Deleting files and directories

Deleting files
The .n1:nx function deletes a single file and returns whether the operation was successful.

$filename = '/path/to/file.txt';

if (file_exists($filename)) {
$Ssuccess = unlink ($filename);

if (!$success) {
throw new Exception ("Cannot delete $filename");

D_eleting directories, with recursive deletion

On the other hand, directories should be deleted with i . However, this function only deletes
empty directories. To delete a directory with files, delete the files in the directories first. If the
directory contains subdirectories, recursion may be needed.

The following example scans files in a directory, deletes member files/directories recursively, and
returns the number of files (not directories) deleted.

function recurse_delete_dir(string $dir) : int {

Scount = 0;

// ensure that $dir ends with a slash so that we can concatenate it with the filenames
directly

Sdir = rtrim($dir, "/\\") . "/";

// use dir () to list files
$list = dir($dir);

// store the next file name to $file. if $file is false, that's all -- end the loop.
while (($file = $list->read()) !== false) {
if($file === "." || $file === "..") continue;
if(is_file($dir . S$file)) {
unlink ($dir . S$file);
Scount++;
} elseif (is_dir(Sdir . S$file)) {
Scount += recurse_delete_dir ($dir . S$file);

}

// finally, safe to delete directory!

rmdir ($dir) ;

https://riptutorial.com/ 166

http://php.net/unlink
http://php.net/rmdir

return Scount;

Convenience functions

Raw direct IO

file get contents @and rile put_contents provide the ability to read/write from/to a file to/from a
PHP string in a single call.

file put_contents Ccan also be used with the r1Le_appenp bitmask flag to append to, instead of
truncate and overwrite, the file. It can be used along with rock_rx bitmask to acquire an exclusive
lock to the file while proceeding to writing. Bitmask flags can be joined with the | bitwise-OR
operator.

Spath = "file.txt";

// reads contents in file.txt to S$contents

Scontents = file_get_contents ($path);

// let's change something... for example, convert the CRLF to LF!
Scontents = str_replace("\r\n", "\n", Scontents);

// now write it back to file.txt, replacing the original contents
file_put_contents ($path, Scontents);

r1e_appeND IS handy for appending to log files while ock_rx helps prevent race condition of file
writing from multiple processes. For example, to write to a log file about the current session:

file_put_contents ("logins.log", "{$_SESSION["username"]} logged in", FILE_APPEND | LOCK_EX) ;

CSV IO

fgetcsv($file, $length, $separator)

The rqetcsv parses line from open file checking for csv fields. It returns CSV fields in an array on
success or rarse on failure.

By default, it will read only one line of the CSV file.

Sfile = fopen ("contacts.csv","r");
print_r (fgetcsv ($file));

print_r (fgetcsv ($file,5," "));
fclose ($file);

contacts.csv

Kai Jim, Refsnes, Stavanger, Norway
Hege, Refsnes, Stavanger, Norway

https://riptutorial.com/ 167

http://php.net/manual/en/function.file-get-contents.php
http://php.net/manual/en/function.file-put-contents.php
http://php.net/manual/en/function.file-put-contents.php
http://php.net/fgetcsv

Array

(
[0] => Kai Jim
[1] => Refsnes
[2] => Stavanger
[3] => Norway

)

Array

[0] => Hege,

%ading a file to stdout directly

readtile copies a file to the output buffer. readfile() will not present any memory issues, even when
sending large files, on its own.

$file = 'monkey.gif';

if (file_exists ($Sfile)) {
header ('Content-Description: File Transfer');
header ('Content-Type: application/octet-stream');
header ('Content-Disposition: attachment; filename="'.basename ($file)."'"");

(
(
header ('Expires: 0');
(
(

header ('Cache-Control: must-revalidate');
header ('Pragma: public');

header ('Content-Length: ' . filesize($file));
readfile ($file);

exit;

Or from a file pointer

Alternatively, to seek a point in the file to start copying to stdout, use r-ass-nru instead. In the
following example, the last 1024 bytes are copied to stdout:

Sfh = fopen("file.txt", "rb");
fseek ($fh, -1024, SEEK_END) ;
fpassthru ($fh) ;

%ading a file into an array

ci1e returns the lines in the passed file in an array. Each element of the array corresponds to a line
in the file, with the newline still attached.

print_r(file("test.txt"));

https://riptutorial.com/ 168

http://php.net/readfile
http://php.net/fpassthru
http://php.net/manual/en/function.file.php

test.txt

Welcome to File handling
This is to test file handling

Output:

Array

[0] => Welcome to File handling
[1] => This is to test file handling

Getting file information

Check if a path is a directory or afile

The = _air function returns whether the argument is a directory, while s ri1< returns whether the

argument is a file. Use i1 <xists to check if it is either.

$dir = "/this/is/a/directory";

Sfile = "/this/is/a/file.txt";

echo is_dir($dir) ? "S$dir is a directory" : "$dir is not a directory", PHP_EOL,
is_file($dir) ? "S$dir is a file" : "$dir is not a file", PHP_EOL,
file_exists($dir) ? "S$dir exists" : "S$dir doesn't exist", PHP_EOL,
is_dir($file) ? "S$file is a directory" : "S$file is not a directory", PHP_EOL,
is_file($file) ? "S$file is a file" : "$file is not a file", PHP_EOL,
file_exists($file) ? "Sfile exists" : "S$file doesn't exist", PHP_EOL;

This gives:

/this/is/a/directory is a directory
/this/is/a/directory is not a file
/this/is/a/directory exists
/this/is/a/file.txt is not a directory
/this/is/a/file.txt is a file
/this/is/a/file.txt exists

C_hecking file type

Use ri1etype to check the type of a file, which may be:

® fifo
® char
® dir

® block
® link
® file

® socket

https://riptutorial.com/

169

http://php.net/is-dir
http://php.net/is-file
http://php.net/file-exists
http://php.net/filetype

® unknown

Passing the filename to the i1ty e directly:
echo filetype("~"); // dir

Note that ri1etype returns false and triggers an =_warnine if the file doesn't exist.

Checking readability and writability

Passing the filename to the s w:itanie and s readanie functions check whether the file is writable

or readable respectively.

The functions return ra1se gracefully if the file does not exist.

Checking file access/modify time

Using i1entinme and rileatine returns the timestamp of the last modification or access of the file.

The return value is a Unix timestamp -- see \Working with Dates and Time for detalils.

echo "File was last modified on " . date("Y-m-d", filemtime ("file.txt"));
echo "File was last accessed on " . date("Y-m-d", fileatime("file.txt"));

Get path parts with fileinfo

$fileToAnalyze = ('/var/www/image.png');
$filePathParts = pathinfo($fileToAnalyze);

echo '<pre>';
print_r ($filePathParts);
echo '</pre>"';

This example will output:

Array

(
[dirname] => /var/www
[basename] => image.png
[extension] => png
[filename] => image

Which can be used as:

SfilePathParts['dirname']
SfilePathParts['basename']

https://riptutorial.com/

170

http://php.net/filetype
http://php.net/is-writable
http://php.net/is-readable
http://php.net/filemtime
http://php.net/fileatime
http://www.riptutorial.com/php/topic/425/working-with-dates-and-time

SfilePathParts|['extension']
SfilePathParts['filename']

$path The full path of the file to be parsed

$option One of four available options [PATHINFO_DIRNAME,
PATHINFO_BASENAME, PATHINFO_EXTENSION or PATHINFO_FILENAME]

« If an option (the second parameter) is not passed, an associative array is returned otherwise
a string is returned.

» Does not validate that the file exists.

» Simply parses the string into parts. No validation is done on the file (no mime-type checking,
etc.)

» The extension is simply the last extension of spath The path for the file image. jpg.png Would
be .png even if it technically a . jpg file. A file without an extension will not return an extension
element in the array.

Minimize memory usage when dealing with large files

If we need to parse a large file, e.g. a CSV more than 10 Mbytes containing millions of rows, some
USe file OfF file_get_contents functions and end up with hitting memory_1imit Setting with

Allowed memory size of XXXXX bytes exhausted

error. Consider the following source (top-1m.csv has exactly 1 million rows and is about 22 Mbytes
of size)

var_dump (memory_get_usage (true)) ;
Sarr = file('top—-1lm.csv');
var_dump (memory_get_usage (true));

This outputs:

int (262144)
int (210501632)

because the interpreter needed to hold all the rows in sarr array, so it consumed ~200 Mbytes of
RAM. Note that we haven't even done anything with the contents of the array.

Now consider the following code:

var_dump (memory_get_usage (true));

Sindex = 1;
if ((Shandle = fopen ("top-lm.csv", "r")) !== FALSE) {
while (($Srow = fgetcsv($handle, 1000, ",")) !== FALSE) {
file_put_contents ('top-lm-reversed.csv',S$index . ',' . strrev($row[l]) . PHP_EOL,

FILE_APPEND) ;

https://riptutorial.com/ 171

Sindex++;

}
fclose ($Shandle) ;

}

var_dump (memory_get_usage (true)) ;

which outputs

int (262144)
int (262144)

so we don't use a single extra byte of memory, but parse the whole CSV and save it to another file
reversing the value of the 2nd column. That's because rgetcsv reads only one row and srow IS
overwritten in every loop.

Stream-based file 10

fopen Opens a file stream handle, which can be used with various functions for reading, writing,
seeking and other functions on top of it. This value is of resource type, and cannot be passed to
other threads persisting its functionality.

$f = fopen("errors.log", "a"); // Will try to open errors.log for writing

The second parameter is the mode of the file stream:

r Open in read only mode, starting at the beginning of the file
r+ Open for reading and writing, starting at the beginning of the file

open for writing only, starting at the beginning of the file. If the file exists it will empty
the file. If it doesn't exist it will attempt to create it.

open for reading and writing, starting at the beginning of the file. If the file exists it will
empty the file. If it doesn't exist it will attempt to create it.

w+t

open a file for writing only, starting at the end of the file. If the file does not exist, it will
try to create it

open a file for reading and writing, starting at the end of the file. If the file does not
exist, it will try to create it

a+

x create and open a file for writing only. If the file exists the rfopen call will fail

x+ create and open a file for reading and writing. If the file exists the fopen call will fail

https://riptutorial.com/ 172

http://php.net/fopen

open the file for writing only. If the file does not exist it will try to create it. It will start
writing at the beginning of the file, but will not empty the file ahead of writing

open the file for reading and writing. If the file does not exist it will try to create it. It
will start writing at the beginning of the file, but will not empty the file ahead of writing

c+

Adding a t behind the mode (e.g. a+b, wt, etc.) in Windows will translate "\n" line endings to "\r\n"
when working with the file. Add » behind the mode if this is not intended, especially if it is a binary
file.

The PHP application should close streams using 1< when they are no longer used to prevent
the Too many open files error. This is particularly important in CLI programs, since the streams are
only closed when the runtime shuts down -- this means that in web servers, it may not be
necessary (but still should, as a practice to prevent resource leak) to close the streams if you do
not expect the process to run for a long time, and will not open many streams.

Reading

Using r--=a will read the given number of bytes from the file pointer, or until an EOF is met.

Reading lines

Using ro=t = will read the file until an EOL is reached, or the given length is read.

Both -2 and rs=« s will move the file pointer while reading.
Reading everything remaining

uUsing st ream cet contents Will all remaining bytes in the stream into a string and return it.

Adjusting file pointer position

Initially after opening the stream, the file pointer is at the beginning of the file (or the end, if the
mode a is used). Using the <<« function will move the file pointer to a new position, relative to
one of three values:

» seek_seT: This is the default value; the file position offset will be relative to the beginning of
the file.

» seek_cur: The file position offset will be relative to the current position.

» seek_enD: The file position offset will be relative to the end of the file. Passing a negative
offset is the most common use for this value; it will move the file position to the specified
number of bytes before the end of file.

https://riptutorial.com/ 173

http://php.net/fclose
http://php.net/fread
http://php.net/fgets
http://php.net/fread
http://php.net/fgets
http://php.net/stream-get-contents
http://php.net/fseek

rewind IS @ convenience shortcut of fseek ($fh, 0, SEEK_SET).
Using =11 will show the absolute position of the file pointer.

For example, the following script reads skips the first 10 bytes, reads the next 10 bytes, skips 10
bytes, reads the next 10 bytes, and then the last 10 bytes in file.txt:

Sfh = fopen("file.txt", "rb");

fseek ($fh, 10); // start at offset 10

echo fread($fh, 10); // reads 10 bytes

fseek ($fh, 10, SEEK_CUR); // skip 10 bytes

echo fread($fh, 10); // read 10 bytes

fseek ($fh, -10, SEEK_END); // skip to 10 bytes before EOF
echo fread($fh, 10); // read 10 bytes

fclose ($fh);

Writing
Using «r i< writes the provided string to the file starting at the current file pointer.

fwrite ($fh, "Some text here\n");

Moving and Copying files and directories

Copying files

copy copies the source file in the first argument to the destination in the second argument. The
resolved destination needs to be in a directory that is already created.

if (copy('test.txt', 'dest.txt')) {
echo 'File has been copied successfully';
} else {

echo 'Failed to copy file to destination given.'

gpying directories, with recursion

Copying directories is pretty much similar to deleting directories, except that for files --» instead
of un1ink is used, while for directories, «xair instead of -na:i - is used, at the beginning instead of
being at the end of the function.

function recurse_delete_dir(string $src, string $dest) : int {
Scount = 0;

// ensure that $src and $dest end with a slash so that we can concatenate it with the
filenames directly

Ssrc = rtrim(Sdest, "/\\") . "/";

https://riptutorial.com/ 174

http://php.net/rewind
http://php.net/ftell
http://php.net/fwrite
http://php.net/copy
http://php.net/copy
http://php.net/unlink
http://php.net/mkdir
http://php.net/rmdir

Sdest = rtrim(S$dest, "/\\") . "/";

// use dir() to list files
$list = dir($src);

// create $dest if it does not already exist
@mkdir ($Sdest) ;

// store the next file name to S$file. if $file is false, that's all —— end the loop.
while (($file = $list—>read()) !== false) {
if($file === "." || $file === "..") continue;

if (is_file(Ssrc . S$Sfile)) {
copy (Ssrc . Sfile, Sdest . $file);

Scount++;
} elseif(is_dir($Ssrc . S$file)) {
Scount += recurse_copy_dir ($Ssrc . $file, S$dest . Ssfile);

return Scount;

R_enamingll\/loving

Renaming/Moving files and directories is much simpler. Whole directories can be moved or
renamed in a single call, using the -<»ane function.

® rename ("~/file.txt", "~/file.html");
® rename ("~/dir", "~/old_dir");

® rename ("~/dir/file.txt", "~/dir2/file.txt");

Read File handling online: https://riptutorial.com/php/topic/1426/file-handling

https://riptutorial.com/ 175

http://php.net/rename
https://riptutorial.com/php/topic/1426/file-handling

Introduction

This extension filters data by either validating or sanitizing it. This is especially useful when the
data source contains unknown (or foreign) data, like user supplied input. For example, this data
may come from an HTML form.

Syntax

» mixed filter_var (mixed $variable [, int $filter = FILTER_DEFAULT [, mixed $options]])

Parameters

Value to filter. Note that scalar values are converted to string internally before

variable they are filtered.

The ID of the filter to apply. The Types of filters manual page lists the available
filter filters.If omitted, FILTER_DEFAULT will be used, which is equivalent to
FILTER_UNSAFE_RAW. This will result in no filtering taking place by default.

Associative array of options or bitwise disjunction of flags. If filter accepts
options, flags can be provided in "flags" field of array. For the "callback" filter,

options callable type should be passed. The callback must accept one argument, the
value to be filtered, and return the value after filtering/sanitizing it.
Examples

Validate Email Address

When filtering an email address riiter_var () Will return the filtered data, in this case the email
address, or false if a valid email address cannot be found:

var_dump (filter_var ('john@example.com', FILTER_VALIDATE_EMAIL));
var_dump (filter_var ('notValidEmail', FILTER_VALIDATE_EMAIL));

Results:

https://riptutorial.com/

176

string(16) "john@example.com"
bool (false)

This function doesn't validate not-latin characters. Internationalized domain name can be validated
in their xn-- form.

Note that you cannot know if the email address is correct before sending an email to it. You may
want to do some extra checks such as checking for a MX record, but this is not necessary. If you
send a confirmation email, don't forget to remove unused accounts after a short period.

Validating A Value Is An Integer

When filtering a value that should be an integer riiter_var () Will return the filtered data, in this
case the integer, or false if the value is not an integer. Floats are not integers:

var_dump (filter_var ('10', FILTER_VALIDATE_INT));
var_dump (filter_var ('alO', FILTER_VALIDATE_INT));
var_dump (filter_var ('l0a', FILTER_VALIDATE_INT));
filter var(' ', FILTER_VALIDATE_INT)) ;
filter var('10.00', FILTER_VALIDATE_INT));
var_dump (filter_var ('10,000', FILTER VALIDATE_INT));
var_dump (filter_var ('-5', FILTER_VALIDATE_INT));
var_dump (filter_var ('+7', FILTER_VALIDATE_INT));

var_dump
var_dump

(
(
(
(
(
(
(
(

Results:

int (10)
bool (false)
bool (false)
bool (false)
bool (false)
bool (false)
int (=5)

int (7)

If you are expecting only digits, you can use a regular expression:

if(is_string ($_GET['entry']) && preg_match('#7[0-9]+S$#', S_GET['entry']))
// this is a digit (positive) integer

else
// entry is incorrect

If you convert this value into an integer, you don't have to do this check and so you can use

filter_var.
Validating An Integer Falls In A Range

When validating that an integer falls in a range the check includes the minimum and maximum
bounds:

Soptions = array(

https://riptutorial.com/ 177

'options'

'min_range'
'max_range'

=> array (

=> 5,
=> 10,

)i

var_dump (filter_var('5"',

var_dump (filter_wvar('10"',
var_dump (filter_var('8"',
var_dump (filter_var('4’',

var_dump (filter_var('11"',
(

var_dump (filter_var('-6"',

Results:

int (5)

int (10)

int (8)

bool (false)
bool (false)
bool (false)

Validate a URL

When filtering a URL fi1ter_var () Will return the filtered data, in this case the URL, or false if a

valid URL cannot be found:

URL: example.com

var_dump (filter_var ('example.
var_dump (filter_var ('example.

(

(

var_dump (filter_var ('example.

var_dump (filter_var ('example.
(

var_dump (filter_var ('example.

Results:

bool (false)
bool (false)
bool (false)
bool (false)
bool (false)

URL: http://example.com

var_dump (filter_var ('http://example.
var_dump (filter_var ('http://example.

(

(

var_dump (filter_var ('http://example.

var_dump (filter_var ('http://example.
(

var_dump (filter_var ('http://example.

Results:

string (18)

com',
com',
com',
com',
com',

"http://example.com"

FILTER_VALIDATE_INT,
FILTER_VALIDATE_INT,

FILTER_VALIDATE_INT,

FILTER_VALIDATE_INT,
FILTER_VALIDATE_INT,
FILTER_VALIDATE_INT,

Soptions)
Soptions
Soptions)
Soptions)
Soptions
Soptions

)
)
)
)
)
)

)i

r

)i
) .

’

FILTER_VALIDATE_URL)) ;
FILTER_VALIDATE_URL,
FILTER_VALIDATE_URL,
FILTER_VALIDATE_URL,
FILTER_VALIDATE_URL,

com',
com',
com',
com',

com',

FILTER_FLAG_SCHEME_REQUIRED)) ;
FILTER_FLAG_HOST_REQUIRED)) ;
FILTER_FLAG_PATH_REQUIRED)) ;
FILTER_FLAG_QUERY_REQUIRED)) ;

FILTER_VALIDATE_URL)) ;
FILTER_VALIDATE_URL,
FILTER_VALIDATE_URL,
FILTER_VALIDATE_URL,
FILTER_VALIDATE_URL,

FILTER_FLAG_SCHEME_REQUIRED)) ;
FILTER_FLAG_HOST_REQUIRED)) ;

FILTER_FLAG_PATH_REQUIRED))
FILTER_FLAG_QUERY_REQUIRED)

https://riptutorial.com/

178

string (18) "http://example.com"
string (18) "http://example.com"
bool (false)
bool (false)

URL: http://www.example.com

var_dump (filter_var ('http://www.example.com', FILTER_VALIDATE_URL));
var_dump (filter_var ('http://www.example.com', FILTER_VALIDATE_URL,
FILTER FLAG_SCHEME_REQUIRED)) ;

var_dump (filter_var ('http://www.example.com', FILTER_VALIDATE_URL,
FILTER FLAG_HOST REQUIRED)) ;

var_dump (filter_var ('http://www.example.com', FILTER_VALIDATE_URL,
FILTER FLAG_PATH REQUIRED)) ;

var_dump (filter_var ('http://www.example.com', FILTER_VALIDATE_URL,
FILTER FLAG_QUERY REQUIRED)) ;

Results:

string(22) "http://www.example.com"
string(22) "http://www.example.com"
string(22) "http://www.example.com"
bool (false)
bool (false)

L”?LZhttp://www.example.com/path/to/dir/

var_dump (filter_var ('http://www.example.com/path/to/dir/', FILTER VALIDATE_URL)) ;
var_dump (filter_var ('http://www.example.com/path/to/dir/', FILTER _VALIDATE_URL,
FILTER FLAG_SCHEME_REQUIRED)) ;

var_dump (filter_var ('http://www.example.com/path/to/dir/', FILTER_VALIDATE_URL,
FILTER FLAG_HOST REQUIRED)) ;

var_dump (filter_var ('http://www.example.com/path/to/dir/', FILTER_VALIDATE_URL,
FILTER FLAG_PATH REQUIRED)) ;

var_dump (filter_var ('http://www.example.com/path/to/dir/', FILTER_VALIDATE_URL,
FILTER FLAG_QUERY REQUIRED)) ;

Results:

string(35) "http://www.example.com/path/to/dir/"
string(35) "http://www.example.com/path/to/dir/"
string(35) "http://www.example.com/path/to/dir/"
string(35) "http://www.example.com/path/to/dir/"

bool (false)

L”?L:http://www.example.com/path/to/dir/index.php

var_dump (filter_var ('http://www.example.com/path/to/dir/index.php', FILTER_VALIDATE_URL));
var_dump (filter_var ('http://www.example.com/path/to/dir/index.php', FILTER_VALIDATE_URL,
FILTER FLAG_SCHEME REQUIRED)) ;

var_dump (filter_var ('http://www.example.com/path/to/dir/index.php', FILTER_VALIDATE_URL,
FILTER FLAG_HOST REQUIRED)) ;

var_dump (filter_var ('http://www.example.com/path/to/dir/index.php', FILTER_VALIDATE_URL,
FILTER FLAG_PATH REQUIRED)) ;

var_dump (filter_var ('http://www.example.com/path/to/dir/index.php', FILTER_VALIDATE_URL,

https://riptutorial.com/ 179

FILTER FLAG_QUERY REQUIRED)) ;

Results:

string (44) "http://www.example.com/path/to/dir/index.php"
string (44) "http://www.example.com/path/to/dir/index.php"
string (44) "http://www.example.com/path/to/dir/index.php"
string (44) "http://www.example.com/path/to/dir/index.php"

bool (false)

L”QL:http://www.example.com/path/to/dir/index.php?testzy

var_dump (filter_var ('http://www.example.com/path/to/dir/index.php?test=y"',

FILTER_VALIDATE_URL)) ;

var_dump (filter_var ('http://www.example.com/path/to/dir/index.php?test=y"',

FILTER_VALIDATE_URL, FILTER FLAG_SCHEME_REQUIRED)) ;

var_dump (filter_var ('http://www.example.com/path/to/dir/index.php?test=y"',

FILTER_VALIDATE_URL, FILTER FLAG_HOST_REQUIRED)) ;

var_dump (filter_var ('http://www.example.com/path/to/dir/index.php?test=y"',

FILTER_VALIDATE_URL, FILTER FLAG_PATH_ REQUIRED)) ;

var_dump (filter_var ('http://www.example.com/path/to/dir/index.php?test=y"',

FILTER_VALIDATE_URL, FILTER FLAG_QUERY_REQUIRED)) ;

Results:

string
string

string
string

Warning: You must check the protocol to protect you against an XSS attack:

var_dump (filter_var ('Jjavascript://comment$0RAalert (1)', FILTER _VALIDATE_URL)) ;

// string(31) "javascript://comment%0Aalert (1)"

Sanitize filters

we can use filters to sanitize our variable according to our need.

Example

Sstring = "<p>Example</p>";

Snewstring = filter_var ($string, FILTER_SANITIZE_STRING) ;
var_dump ($Snewstring); // string(7) "Example"

above will remove the html tags from sstring variable.

Validating Boolean Values

var_dump (filter_ var (true, FILTER VALIDATE_BOOLEAN, FILTER _NULL_ON_FAILURE)) ;

"http://www.example.com/path/to/dir/index.php?test=y"
"http://www.example.com/path/to/dir/index.php?test=y"

(51)
(51)

string(51) "http://www.example.com/path/to/dir/index.php?test=y"
(51) "http://www.example.com/path/to/dir/index.php?test=y"
(51)

"http://www.example.com/path/to/dir/index.php?test=y"

//

true

https://riptutorial.com/

180

var_dump (filter_var (false, FILTER _VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // false
var_dump (filter var (1, FILTER _VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // true
var_dump (filter_var (0, FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // false
var_dump (filter var('l', FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // true
var_dump (filter var('0', FILTER _VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // false
var_dump (filter var('', FILTER_VALIDATE BOOLEAN, FILTER_NULL_ON_FAILURE)); // false
(
(
(
(
(

var_dump (filter_var (' ', FILTER VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // false
var_dump (filter_var ('true', FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // true
var_dump (filter_var ('false', FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // false
var_dump (filter var ([], FILTER_VALIDATE_BOOLEAN, FILTER NULL_ON_FAILURE)); // NULL
var_dump (filter_ var (null, FILTER VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // false

Validating A Number Is A Float
Validates value as float, and converts to float on success.

var_dump (filter_var(l, FILTER VALIDATE_FLOAT)) ;

var_dump (filter_var (1.0, FILTER_VALIDATE_FLOAT));

var_dump (filter_var(1.0000, FILTER_VALIDATE_FLOAT));
var_dump (filter_var(1.00001, FILTER_VALIDATE_FLOAT)) ;
var_dump (filter_var('l', FILTER_VALIDATE_FLOAT));

var_dump (filter_var('1.0', FILTER_VALIDATE_FLOAT));
var_dump (filter_var('1.0000', FILTER_VALIDATE_FLOAT));
var_dump (filter_var('1.00001', FILTER_VALIDATE_FLOAT)) ;
var_dump (filter_var('1l,000', FILTER_VALIDATE_FLOAT)) ;
var_dump (filter_var('1,000.0', FILTER_VALIDATE_FLOAT)) ;
var_dump (filter_var('1l,000.0000', FILTER_VALIDATE_FLOAT)) ;
var_dump (filter_var('1l,000.00001', FILTER VALIDATE_FLOAT)) ;

var_dump (filter_var (1, FILTER_VALIDATE_FLOAT, FILTER FLAG_ALLOW_THOUSAND)) ;
var_dump (filter_var (1.0, FILTER _VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)) ;
var_dump (filter_var(1.0000, FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump (filter_var(1.00001, FILTER VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)) ;
var_dump (filter_var('l', FILTER _VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)) ;
var_dump (filter_var('1.0', FILTER_VALIDATE_FLOAT, FILTER FLAG_ALLOW_THOUSAND)) ;
var_dump (filter_var('1.0000', FILTER VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)) ;
var_dump (filter_var('1.00001', FILTER_VALIDATE_FLOAT, FILTER FLAG_ALLOW_THOUSAND)) ;
var_dump (filter_var('1l,000', FILTER VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)) ;
var_dump (filter_var('1,000.0', FILTER_VALIDATE_FLOAT, FILTER FLAG_ALLOW_THOUSAND)) ;
var_dump (filter_var('1,000.0000', FILTER VALIDATE_FLOAT, FILTER _FLAG_ALLOW_THOUSAND)) ;
var_dump (filter_var('1l,000.00001', FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));

Results

float (1)

float (1)

float (1)

float (1.00001)
float (1)

float (1)

float (1)

float (1.00001)
bool (false)
bool (false)
bool (false)
bool (false)

https://riptutorial.com/ 181

float (1)

float (1)

float (1)

float (1.00001)
float (1)

float (1)

float (1)

float (1.00001)
float (1000)
float (1000)
float (1000)
float (1000.00001)

Validate A MAC Address
Validates a value is a valid MAC address

var_dump (filter_ var ('FA-F9-DD-B2-5E-0D', FILTER_VALIDATE_MAC));
var_dump (filter_var ('DC-BB-17-9A-CE-81', FILTER_VALIDATE_MAC));
var_dump (filter_var ('96-D5-9E-67-40-AB', FILTER_VALIDATE_MAC));
var_dump (filter_var ('96-D5-9E-67-40', FILTER _VALIDATE_MAC));
var_dump (filter_var('', FILTER VALIDATE_MAC)) ;

Results:

string(17) "FA-F9-DD-B2-5E-0D"
string(17) "DC-BB-17-9A-CE-81"
string(17) "96-D5-9E-67-40-AB"
bool (false)
bool (false)

Sanitze Email Addresses
Remove all characters except letters, digits and #$%&*+-=?" {|}~@.][].

var_dump (filter_ var ('john@example.com', FILTER_SANITIZE_EMAIL));
var_dump (filter_var ("!#$%&"'*+-=2"_"{|}~.[]Q@example.com", FILTER_SANITIZE_EMAIL)) ;
var_dump (filter_var ('john/QRexample.com', FILTER_SANITIZE_EMAIL));
var_dump (filter_var ('john\@example.com', FILTER_SANITIZE_EMAIL));
var_dump (filter_var ('joh n@example.com', FILTER_SANITIZE_EMAIL));

Results:

string(16) "johnlexample.com"

string(33) "!#$%&'*+-=2"_"{|}~.[]@example.com"

string(16) "johnlexample.com"

string(16) "johnlexample.com"
(16)

string "johnlexample.com"

Sanitize Integers

Remove all characters except digits, plus and minus sign.

https://riptutorial.com/ 182

var_dump (filter_var (1, FILTER_SANITIZE_NUMBER_INT));
var_dump (filter var (-1, FILTER_SANITIZE_NUMBER_INT)) ;
var_dump (filter var (+1, FILTER_SANITIZE_NUMBER_INT));
var_dump (filter_var (1.00, FILTER SANITIZE_NUMBER_INT));
var_dump (filter_var (+1.00, FILTER_SANITIZE_NUMBER_INT));
var_dump (filter_var (-1.00, FILTER_SANITIZE_NUMBER_INT)) ;
var_dump (filter_var('l', FILTER_SANITIZE_NUMBER_INT));

var_dump (filter_var ('+1', FILTER SANITIZE_NUMBER_INT)) ;
var_dump (filter var ('1.00', FILTER_SANITIZE_NUMBER_INT));
var_dump (filter_var ('+1.00', FILTER _SANITIZE_NUMBER_INT));
var_dump (filter var ('-1.00', FILTER_SANITIZE_NUMBER_INT));

var_dump (filter_var ('l unicorn', FILTER_SANITIZE_NUMBER_ INT));

var_dump (filter_var ('-1] unicorn', FILTER_SANITIZE_NUMBER_INT)) ;
var_dump (filter_var ('+1l unicorn', FILTER_SANITIZE_NUMBER_INT)) ;
var_dump (filter var ("!'#$%&'*+-=2"_"{]}~@.[]10123456789%abcdefghijklmnopgrstuvwxyz",

(
(
(
(
(
(
(
var_dump (filter_var('-1', FILTER_SANITIZE_NUMBER_INT)) ;
(
(
(
(
(
(
(

FILTER SANITIZE NUMBER INT));

Results:

string(l) "1"
string(2) "-1"
string(l) "1"
string(l) "1"
string(l) "1"
string(2) "-1"
string(l) "1"
string(2) "-1"
string(2) "+1"
string(3) "100"
string(4) "+100"
string(4) "-100"
string(l) "1"
string(2) "-1"
string(2) "+1"
string(12) "+-0123456789"

Sanitize URLs

Sanitze URLs

Remove all characters except letters, digits and $-_.+!*'(),{})\\~[] <>#%";/?:@&=

var_dump (filter_var ('http://www.example.com/path/to/dir/index
FILTER SANITIZE_ URL));

var_dump (filter_var ("http://www.example.com/path/to/dir/index
=2~ “{|}~.[]1", FILTER SANITIZE URL));

var_dump (filter_var ('http://www.example.com/path/to/dir/index
FILTER SANITIZE_ URL));

Results:

string(51) "http://www.example.com/path/to/dir/index.php?test
string(72) "http://www.example.com/path/to/dir/index.php?test
string (53

.php?test=y"',

.php?test=y!#$%& "' *+-

.php?test=a b c',

:y"
=y #8858 *+—=2"_"{|}~.
) "http://www.example.com/path/to/dir/index.php?test=

abc"

[]"

https://riptutorial.com/

183

Sanitize Floats
Remove all characters except digits, +- and optionally .,eE.

var_dump (filter_var(l, FILTER_SANITIZE_NUMBER_FLOAT)) ;

var_dump (filter_var (1.0, FILTER_SANITIZE_NUMBER_FLOAT)) ;

var_dump (filter_var(1.0000, FILTER_SANITIZE_NUMBER_FLOAT)) ;
var_dump (filter_var(1.00001, FILTER_SANITIZE_NUMBER_ FLOAT)) ;
var_dump (filter_var('l', FILTER_SANITIZE_NUMBER_FLOAT)) ;

var_dump (filter_var('1.0', FILTER_SANITIZE_NUMBER_FLOAT)) ;
var_dump (filter_var('1.0000', FILTER_SANITIZE_NUMBER_FLOAT)) ;
var_dump (filter_var('1.00001', FILTER_SANITIZE_NUMBER_FLOAT)) ;
var_dump (filter_var('1l,000', FILTER_SANITIZE_NUMBER_ FLOAT)) ;
var_dump (filter_var('1,000.0', FILTER_SANITIZE_NUMBER_FLOAT)) ;
var_dump (filter_var('1,000.0000', FILTER_SANITIZE_NUMBER_ FLOAT)) ;
var_dump (filter_var('1l,000.00001', FILTER_SANITIZE_NUMBER_FLOAT)) ;
var_dump (filter_var('1.8281e-009', FILTER_SANITIZE_NUMBER_FLOAT)) ;

Results:

string(l) "1"
string(l) "1"
string(l) "1"
string(6) "100001"
string(l) "1"
string(2) "10"
string(5) "10000"
string(6) "100001"
string(4) "1000"
string(5) "10000"
string(8) "10000000"
string(9) "100000001"
string(9) "18281-009"

With the rrrTER_FLAG_ALLOW_THOUSAND Option:

var_dump (filter_var (1, FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)) ;

var_dump (filter_var (1.0, FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)) ;

var_dump (filter_var (1.0000, FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)) ;
var_dump (filter_var (1.00001, FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)) ;
var_dump (filter_var('l', FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)) ;

var_dump (filter_var('1.0', FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)) ;
var_dump (filter_var('1.0000', FILTER_SANITIZE_NUMBER_FLOAT, FILTER FLAG_ALLOW_THOUSAND)) ;
var_dump (filter_var('1.00001', FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)) ;
var_dump (filter_var('1l,000', FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)) ;
var_dump (filter_var('1,000.0', FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND)) ;
var_dump (filter_var('1,000.0000', FILTER_SANITIZE_NUMBER_FLOAT, FILTER FLAG_ALLOW_THOUSAND)) ;
var_dump (filter_var('1,000.00001', FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND))
var_dump (filter_var('1.8281e-009', FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND))

Results:
string (1) "1"
string (1) "1"
string(6) "100001"
string (1) "1"

’

’

https://riptutorial.com/

184

string(2) "10"
string(5) "10000"
string(6) "100001"
string(5) "1,000"
string(6) "1,0000"
string(9) "1,0000000"
string (10) "1,00000001"
string(9) "18281-009"

With the r1rTER FLAG_ALLOW_ScCIENTIFIC Option:

var_dump (filter_var (1,
var_dump (filter_var (1.0,
var_dump (filter_var(1.0000,

var_dump (filter_ var(1.00001,
filter_var('1l"',
filter_var('1.0"',
var_dump (filter_var('1.0000"',

var_dump (filter_var('1.00001"',

var_dump
var_dump

(
(
(
(
(
(
(
(
var_dump (filter_var('l,000',
var_dump (filter_var('1,000.0"',
var_dump (filter_var('1,000.0000"',
FILTER _FLAG_ALLOW_SCIENTIFIC));
var_dump (filter_var('1,000.00001",
FILTER_FLAG_ALLOW_SCIENTIFIC)) ;
var_dump (filter_var('1.8281e-009',

FILTER_FLAG_ALLOW_SCIENTIFIC)) ;

Results:
string(l) "1"
string(l) "1"
string(l) "1"
string(6) "100001"
string(l) "1"
string(2) "10"
string(5) "10000"
string(6) "100001"
string(4) "1000"
string(5) "10000"
string(8) "10000000"
string(9) "100000001"
string (10) "18281e-009"

Validate IP Addresses

FILTER_SANITIZE_NUMBER_FLOAT,
FILTER_SANITIZE_NUMBER_FLOAT,
FILTER_
FILTER_SANITIZE_NUMBER_FLOAT,
FILTER_SANITIZE_NUMBER_FLOAT,
FILTER_SANITIZE_NUMBER_FLOAT,
FILTER_SANITIZE_NUMBER_FLOAT,
FILTER_SANITIZE_NUMBER_FLOAT,
FILTER_SANITIZE_NUMBER_FLOAT,
FILTER_SANITIZE_NUMBER_FLOAT,
FILTER_SANITIZE_NUMBER_FLOAT,

FILTER_FLAG_ALLOW_SCIENTIFIC)) ;
FILTER_FLAG_ALLOW_SCIENTIFIC)) ;
SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_SCIENTIFIC));
FILTER_FLAG_ALLOW_SCIENTIFIC)) ;
FILTER_FLAG_ALLOW_SCIENTIFIC)) ;
FILTER_FLAG_ALLOW_SCIENTIFIC)) ;
FILTER_FLAG_ALLOW_SCIENTIFIC)) ;
FILTER_FLAG_ALLOW_SCIENTIFIC)) ;
FILTER_FLAG_ALLOW_SCIENTIFIC)) ;
FILTER_FLAG_ALLOW_SCIENTIFIC)) ;

FILTER _SANITIZE NUMBER FLOAT,

FILTER _SANITIZE NUMBER FLOAT,

Validates a value is a valid IP address

var_dump (filter_var ('185.158.24.24",
filter var('2001:0db8:0a0b:12£0:0000:0000:0000:0001",

(
var_dump (
var_dump (filter_var('192.168.0.1"',
(

var_dump (filter_var('127.0.0.1",

Results:

FILTER VALIDATE_IP));
FILTER VALIDATE_IP));
FILTER VALIDATE_IP));

FILTER VALIDATE_IP));

https://riptutorial.com/

string (13) "185.158.24.24"

string(39) "2001:0db8:0a0b:12£f0:0000:0000:0000:0001"
string(11) "192.168.0.1"

string(9) "127.0.0.1"

Validate an valid IPv4 IP address:

var_dump (filter var('185.158.24.24"', FILTER VALIDATE_IP, FILTER_FLAG_IPV4));
var_dump (filter _var('2001:0db8:0a0b:12£f0:0000:0000:0000:0001"', FILTER VALIDATE_TIP,
FILTER_FLAG_IPV4));

var_dump (filter _var('192.168.0.1', FILTER VALIDATE_IP, FILTER_FLAG_IPV4));
var_dump (filter _var('127.0.0.1', FILTER_VALIDATE_IP, FILTER FLAG_IPV4));

Results:

string(13) "185.158.24.24"
bool (false)

string(11l) "192.168.0.1"
string(9) "127.0.0.1"

Validate an valid IPv6 IP address:

var_dump (filter var ('185.158.24.24', FILTER_VALIDATE_IP, FILTER_FLAG_IPV6));
var_dump (filter_var ('2001:0db8:0a0b:12£f0:0000:0000:0000:0001"', FILTER_VALIDATE_TIP,
FILTER_FLAG_IPV6));

var_dump (filter_var('192.168.0.1', FILTER_VALIDATE_IP, FILTER_FLAG_IPV6));
var_dump (filter_var('127.0.0.1', FILTER_VALIDATE_IP, FILTER_FLAG_IPV6));

Results:

bool (false)
string(39) "2001:0db8:0a0b:12£f0:0000:0000:0000:0001"
bool (false)
bool (false)

Validate an IP address is not in a private range:

var_dump (filter_var ('185.158.24.24', FILTER VALIDATE_IP, FILTER_FLAG_NO_PRIV_RANGE)) ;
var_dump (filter_var ('2001:0db8:0a0b:12£f0:0000:0000:0000:0001"', FILTER_VALIDATE_IP,
FILTER_FLAG_NO_PRIV_RANGE)) ;

var_dump (filter _var('192.168.0.1', FILTER_VALIDATE_IP, FILTER_FLAG_NO_PRIV_RANGE)) ;
var_dump (filter_var('127.0.0.1', FILTER_VALIDATE_IP, FILTER FLAG_NO_PRIV_RANGE)) ;

Results:

string(13) "185.158.24.24"

string(39) "2001:0db8:0a0b:12£0:0000:0000:0000:0001"
bool (false)

string(9) "127.0.0.1"

Validate an IP address is not in a reserved range:

https://riptutorial.com/ 186

var_dump (filter var ('185.158.24.24', FILTER VALIDATE_IP, FILTER_FLAG_NO_RES_RANGE)) ;
var_dump (filter_var ('2001:0db8:0a0b:12£f0:0000:0000:0000:0001"', FILTER_VALIDATE_IP,
FILTER_FLAG_NO_RES_RANGE)) ;

var_dump (filter var('192.168.0.1', FILTER_VALIDATE_IP, FILTER_FLAG_NO_RES_RANGE)) ;
var_dump (filter_var('127.0.0.1', FILTER_VALIDATE_IP, FILTER_FLAG_NO_RES_RANGE)) ;

Results:

string(13) "185.158.24.24"
bool (false)

string(11l) "192.168.0.1"
bool (false)

Read Filters & Filter Functions online: https://riptutorial.com/php/topic/1679/filters---filter-functions

https://riptutorial.com/ 187

https://riptutorial.com/php/topic/1679/filters---filter-functions

C_hapter 35: Functional Programming

Introduction

PHP's functional programming relies on functions. Functions in PHP provide organized, reusable
code to perform a set of actions. Functions simplify the coding process, prevent redundant logic,
and make code easier to follow. This topic describes the declaration and utilization of functions,
arguments, parameters, return statements and scope in PHP.

Examples

Assignment to variables

Anonymous functions can be assigned to variables for use as parameters where a callback is
expected:

Suppercase = function ($data) {
return strtoupper ($Sdata);

}i
SmixedCase = ["Hello", "World"];

Suppercased = array_map (Suppercase, S$mixedCase);
print_r (Suppercased) ;

These variables can also be used as standalone function calls:

echo S$uppercase ("Hello world!"); // HELLO WORLD!

Using outside variables

The use construct is used to import variables into the anonymous function's scope:

Sdivisor = 2332;
Smyfunction = function ($number) use (S$divisor) {
return S$Snumber / $divisor;

}i

echo $myfunction(81620); //Outputs 35

Variables can also be imported by reference:

Scollection = [];

Sadditem = function ($item) use (&Scollection) {
Scollection[] = $item;
bi

Sadditem (1) ;

https://riptutorial.com/ 188

http://php.net/manual/en/functions.anonymous.php

Sadditem(2) ;

//$collection is now [1,2]

Passing a callback function as a parameter

There are several PHP functions that accept user-defined callback functions as a parameter, such
aS:. call_user_func (), usort () and array_map () .

Depending on where the user-defined callback function was defined there are different ways to
pass them:

Procedural style:

function square ($number)

{

return S$number * S$number;

}

$initial_array = [1, 2, 3, 4, 5];
$final_array = array_map ('square', $initial_array);
var_dump ($final_array); // prints the new array with 1, 4, 9, 16, 25

Object Oriented style:

class SquareHolder

{

function square ($number)

{

return S$number * Snumber;

SsquaredHolder = new SquareHolder () ;
$initial_array = [1, 2, 3, 4, 5];
S$final_array = array_map ([S$SsquaredHolder, 'square'], $initial_array);

var_dump ($final_array); // prints the new array with 1, 4, 9, 16, 25

Object Oriented style using a static method:

class StaticSquareHolder

{

public static function square ($number)

{

return S$Snumber * S$number;

}

$initial_array = [1, 2, 3, 4, 5];
$final_array = array_map (['StaticSquareHolder', 'square'], $initial_array);
// or:

https://riptutorial.com/ 189

https://secure.php.net/manual/en/function.call-user-func.php
https://secure.php.net/manual/en/function.usort.php
https://secure.php.net/manual/en/function.array-map.php

$final_array = array_map ('StaticSquareHolder::square', $initial_array); // for PHP >= 5.2.3

var_dump ($final_array); // prints the new array with 1, 4, 9, 16, 25

Using built-in functions as callbacks

In functions taking ca11ab1e @s an argument, you can also put a string with PHP built-in function.
It's common to use trim @S array_map parameter to remove leading and trailing whitespace from all
strings in the array.

Sarr = [' one ', 'two v, three'];
var_dump (array_map('trim', Sarr));

// array(3) {

// [0] =>

// string(3) "one"

// (11 =>

// string(3) "two"

// [2] =>

// string(5) "three"

//)

Anonymous function
An anonymous function is just a function that doesn't have a name.

// Anonymous function
function() {
return "Hello World!";

}i

In PHP, an anonymous function is treated like an expression and for this reason, it should be
ended with a semicolon ;.

An anonymous function should be assigned to a variable.

// Anonymous function assigned to a variable
SsayHello = function ($name) {
return "Hello $name!";

}i

print $sayHello('John'); // Hello John

Or it should be passed as parameter of another function.

Susers = [
["'name' => 'Alice', 'age' => 20],
["'name' => 'Bobby', 'age' => 22],
['name' => 'Carol', 'age' => 17]

1

// Map function applying anonymous function
SuserName = array_map (function (Suser) {

https://riptutorial.com/ 190

return Suser|['name'];

}, Susers);

print_r (SusersName); // ['Alice', 'Bobby', 'Carol']

Or even been returned from another function.

Self-executing anonymous functions:

// For PHP 7.x
(function () {
echo "Hello world!";

IO

// For PHP 5.x
call _user_ func (function () {
echo "Hello world!";

1)
Passing an argument into self-executing anonymous functions:

// For PHP 7.x
(function (Sname) {

echo "Hello S$name!";
}) ("John') ;

// For PHP 5.x
call_user_func (function ($Sname) {

echo "Hello S$Sname!";
}, '"John');

Scope
In PHP, an anonymous function has its own scope like any other PHP function.

In JavaScript, an anonymous function can access a variable in outside scope. But in PHP, this is
not permitted.

Sname = 'John';
// Anonymous function trying access outside scope

$sayHello = function () {
return "Hello S$name!";

}

print S$sayHello('John'); // Hello !
// With notices active, there is also an Undefined variable $name notice

Closures

A closure is an anonymous function that can't access outside scope.

When defining an anonymous function as such, you're creating a "namespace" for that function. It

https://riptutorial.com/ 191

currently only has access to that namespace.

SexternalVariable = "Hello";
$secondExternalVariable = "Foo";
SmyFunction = function() {

var_dump ($SexternalVariable, $secondExternalVariable); // returns two error notice, since the

variables aren’t defined

It doesn't have access to any external variables. To grant this permission for this namespace to
access external variables, you need to introduce it via closures (use()).

SmyFunction = function() use ($externalVariable, $secondExternalVariable) {
var_dump (SexternalVariable, $secondExternalVariable); // Hello Foo

}

This is heavily attributed to PHP's tight variable scoping - If a variable isn't defined within the
scope, or isn't brought in with g10pa1 then it does not exist.

Also note:

Inheriting variables from the parent scope is not the same as using global variables.
Global variables exist in the global scope, which is the same no matter what function is

executing.

The parent scope of a closure is the function in which the closure was declared (not
necessarily the function it was called from).

Taken from the PHP Documentation for Anonymous Functions

In PHP, closures use an early-binding approach. This means that variables passed to the
closure's namespace using use keyword will have the same values when the closure was defined.

To change this behavior you should pass the variable by-reference.

Srate = .05;
// Exports variable to closure's scope
ScalculateTax = function (Svalue) use (Srate) {

return $value * S$Srate;

bi
Srate = .1;

print $calculateTax (100); // 5

Srate = .05;

// Exports variable to closure's scope
ScalculateTax = function ($value) use (&Srate) { // notice the & before S$rate

https://riptutorial.com/ 192

http://php.net/manual/en/functions.anonymous.php

return S$Svalue * Srate;

bi

Srate = .1;

print S$ScalculateTax(100); // 10
Default arguments are not implicitly required when defining anonymous functions with/without
closures.

Smessage = 'Im yelling at you';

Syell = function () use ($Smessage) {

echo strtoupper ($Smessage) ;
bi

Syell(); // returns: IM YELLING AT YOU

Pure functions

A pure function is a function that, given the same input, will always return the same output and
are side-effect free.

// This is a pure function
function add($a, $b) {
return $a + $b;

Some side-effects are changing the filesystem, interacting with databases, printing to the screen.

// This is an impure function
function add(a, Sb) {

echo "Adding...";

return S$Sa + S$b;

Objects as a function

class SomeClass {
public function __invoke (Sparaml, S$param2) {
// put your code here
}

Sinstance = new SomeClass () ;
Sinstance ('First', 'Second'); // call the _ invoke () method

An object with an __invoke method can be used exactly as any other function.

The __invoke method will have access to all properties of the object and will be able to call any
methods.

https://riptutorial.com/ 193

Common functional methods in PHP

Mapping
Applying a function to all elements of an array :

array_map ('strtoupper', $array);

Be aware that this is the only method of the list where the callback comes first.

Reducing (or folding)

Reducing an array to a single value :

Ssum = array_reduce ($numbers, function (S$Scarry, S$number) {
return S$carry + S$Snumber;

}) i

Filtering
Returns only the array items for which the callback returns true :

SonlyEven = array_filter ($Snumbers, function ($number) ({
return ($number % 2) === 0;

)i

Read Functional Programming online: https://riptutorial.com/php/topic/205/functional-programming

https://riptutorial.com/

194

https://riptutorial.com/php/topic/205/functional-programming

C_hapter 36: Functions

Syntax

« function func_name($parameterNamel, $parameterName?2) { code_to_run(); }

« function func_name($optionalParameter = default_value) { code_to_run(); }
 function func_name(type_name $parameterName) { code_to_run(); }

 function &returns_by reference() { code_to_run(); }

« function func_name(&$referenceParameter) { code_to_run(); }

« function func_name(...$variadicParameters) { code_to_run(); } // PHP 5.6+

« function func_name(type_name &...$varRefParams) { code_to_run(); } // PHP 5.6+
 function func_name() : return_type { code_To_run(); } // PHP 7.0+

Examples

Basic Function Usage
A basic function is defined and executed like this:

function hello ($name)
{
print "Hello S$name";

}

hello ("Alice");

Optional Parameters
Functions can have optional parameters, for example:

function hello ($name, $style = 'Formal')
{
switch ($style) {
case 'Formal':
print "Good Day $name";
break;
case 'Informal':
print "Hi S$name";
break;
case 'Australian':
print "G'day S$name";
break;
default:
print "Hello $name";

break;

}

hello('Alice");
// Good Day Alice

https://riptutorial.com/

195

hello('Alice', 'Australian');
// G'day Alice

Passing Arguments by Reference

Function arguments can be passed "By Reference", allowing the function to modify the variable
used outside the function:

function pluralize (&Sword)

{

if (substr ($word, -1) == 'y') {
Sword = substr (Sword, 0, -1) . 'ies';
} else {
Sword .= 's';
}
}
Sword = 'Bannana';

pluralize (Sword) ;

print S$word;
// Bannanas

Object arguments are always passed by reference:

function addOneDay ($Sdate)

{
Sdate->modify ('+1 day');

Sdate = new DateTime ('2014-02-28");
addOneDay ($date) ;

print $date->format ('Y-m-d');
// 2014-03-01

To avoid implicit passing an object by reference, you should cione the object.

Passing by reference can also be used as an alternative way to return parameters. For example,
the socket_getpeernamefunCﬁon:

bool socket_getpeername (resource $socket , string &$address [, int &$port])

This method actually aims to return the address and port of the peer, but since there are two
values to return, it chooses to use reference parameters instead. It can be called like this:

if (!socket_getpeername ($socket, S$address, S$port)) {
throw new RuntimeException (socket_last_error());

}

echo "Peer: $address:S$port\n";

The variables saddress and sport do not need to be defined before. They will:

https://riptutorial.com/ 196

1. be defined as nu11 first,

2. then passed to the function with the predefined nu11 value

3. then modified in the function

4. end up defined as the address and port in the calling context.

Variable-length argument lists

5.6

PHP 5.6 introduced variable-length argument lists (a.k.a. varargs, variadic arguments), using the
... token before the argument name to indicate that the parameter is variadic, i.e. it is an array
including all supplied parameters from that one onward.

function variadic_func ($nonVariadic, ...S$variadic) {
echo json_encode ($variadic);

}

variadic_func(l, 2, 3, 4); // prints [2,3,4]

Type names can be added in front of the .. .:

function foo (Bar ...S$bars) {}
The « reference operator can be added before the ..., but after the type name (if any). Consider
this example:

class Foo{}

function a(Foo &...S$Sfoos) {
$i = 0;
foreach($Sa as &Sfoo){ // note the &

Sfoo = $i++;

}

}

Sa = new Foo;

Sc = new Fooj;

Sb =& S$c;

a(sa, $b);

var_dump (Sa, $b, $c);

Output:

int (0)
int (1)
int (1)

On the other hand, an array (or traversabie) Of arguments can be unpacked to be passed to a
function in the form of an argument list:

var_dump (...hash_algos());

Output:

https://riptutorial.com/ 197

string(3) "md2"
string(3) "md4"
string(3) "md5"

Compare with this snippet without using .. .:

var_dump (hash_algos());

Output:

array (46) {
[0]=>
string(3) "md2"
[1]=>
string(3) "md4"

Therefore, redirect functions for variadic functions can now be easily made, for example:

public function formatQuery (Squery, ...S$args) {

return sprintf (Squery, ...array_map([$mysgli, "real_escape_string"], S$args));

}

Apart from arrays, TraversableS, SUCh as 1terator (€Specially many of its subclasses from SPL)
can also be used. For example:

Siterator = new LimitIterator (new Arraylterator ([0, 1, 2, 3, 4, 5, 61), 2, 3);
echo bin2hex (pack ("c*", ...S$it)); // Output: 020304

If the iterator iterates infinitely, for example:

Siterator = new Infinitelterator (new Arraylterator ([0, 1, 2, 3, 41));
var_dump (...S$iterator);

Different versions of PHP behave differently:

* From PHP 7.0.0 up to PHP 7.1.0 (beta 1):
> A segmentation fault will occur
o The PHP process will exit with code 139
* In PHP 5.6:
o A fatal error of memory exhaustion ("Allowed memory size of %d bytes exhausted") will
be shown.
o The PHP process will exit with code 255

Note: HHVM (v3.10 - v3.12) does not support unpacking rraversabieS. A warning
message "Only containers may be unpacked" will be shown in this attempt.

Function Scope

https://riptutorial.com/ 198

Variables inside functions is inside a local scope like this

Snumber = 5

function foo() {
Snumber = 10
return $number

foo(); //Will print 10 because text defined inside function is a local variable

Read Functions online: https://riptutorial.com/php/topic/4551/functions

https://riptutorial.com/ 199

https://riptutorial.com/php/topic/4551/functions

C_hapter 37: Generators

Examples

Why use a generator?

Generators are useful when you need to generate a large collection to later iterate over. They're a
simpler alternative to creating a class that implements an Iterator, which is often overkill.

For example, consider the below function.

function randomNumbers (int $length)

{

Sarray = [1;

for ($1 = 0; $i < $length; S$i++) {
Sarray[] = mt_rand(1l, 10);

}

return S$array;

All this function does is generates an array that's filled with random numbers. To use it, we might
do randomnumbers (10), Which will give us an array of 10 random numbers. What if we want to
generate one million random numbers? randomNumbers (1000000) Will do that for us, but at a cost of
memory. One million integers stored in an array uses approximately 33 megabytes of memory.

$startMemory = memory_get_usage () ;
SrandomNumbers = randomNumbers (1000000) ;
echo memory_get_usage() - $startMemory, ' bytes';

This is due to the entire one million random numbers being generated and returned at once, rather
than one at a time. Generators are an easy way to solve this issue.

Re-writing randomNumbers() using a generator
Our randomnumbers () function can be re-written to use a generator.

<?php

function randomNumbers (int $length)
{
for ($1 = 0; $i < $length; S$i++) {
// yield tells the PHP interpreter that this value
// should be the one used in the current iteration.
yield mt_rand (1, 10);

https://riptutorial.com/ 200

http://php.net/manual/en/class.iterator.php

foreach (randomNumbers (10) as S$number) {
echo "S$number\n";

Using a generator, we don't have to build an entire list of random numbers to return from the
function, leading to much less memory being used.

Reading a large file with a generator

One common use case for generators is reading a file from disk and iterating over its contents.
Below is a class that allows you to iterate over a CSV file. The memory usage for this script is very
predictable, and will not fluctuate depending on the size of the CSV file.

<?php
class CsvReader
{
protected S$file;
public function __construct ($filePath) {

Sthis->file = fopen($filePath, 'r');

public function rows ()
{
while (!feof (S$Sthis->file)) {
Srow = fgetcsv ($Sthis->file, 4096);

yield S$Srow;

return;

Scsv = new CsvReader ('/path/to/huge/csv/file.csv');

foreach ($Scsv—->rows () as Srow) {
// Do something with the CSV row.

The Yield Keyword

A yield Statement is similar to a return statement, except that instead of stopping execution of the
function and returning, yield instead returns a Generator object and pauses execution of the
generator function.

Here is an example of the range function, written as a generator:

function gen_one_to_three () {
for ($i = 1; $i <= 3; S$i++) {
// Note that $i is preserved between yields.
yield $i;

https://riptutorial.com/ 201

http://php.net/manual/en/class.generator.php

You can see that this function returns a Generator object by inspecting the output of var_dump:

var_dump (gen_one_to_three())
Outputs:

class Generator (0) {

}

%Iding Values

The Generator object can then be iterated over like an array.

foreach (gen_one_to_three() as S$value) {
echo "S$Svalue\n";

The above example will output:

%Iding Values with Keys

In addition to yielding values, you can also yield key/value pairs.

function gen_one_to_three () {
Skeys = ["first", "second", "third"];

for ($i = 1; S$i <= 3; S$i++) {
// Note that $i is preserved between yields.
yield S$keys[$i - 1] => $i;
}
foreach (gen_one_to_three() as S$key => S$value) {

echo "S$key: $value\n";

}

The above example will output:

first: 1
second: 2
third: 3

Using the send()-function to pass values to a generator

https://riptutorial.com/ 202

http://php.net/manual/en/class.generator.php
http://php.net/manual/en/class.generator.php

Generators are fast coded and in many cases a slim alternative to heavy iterator-implementations.
With the fast implementation comes a little lack of control when a generator should stop
generating or if it should generate something else. However this can be achieved with the usage
of the send () function, enabling the requesting function to send parameters to the generator after
every loop.

//Imagining accessing a large amount of data from a server, here is the generator for this:
function generateDataFromServerDemo ()
{

$indexCurrentRun = 0; //In this example in place of data from the server, I just send

feedback everytime a loop ran through.

Stimeout = false;
while (!S$timeout)
{
Stimeout = yield $indexCurrentRun; // Values are passed to caller. The next time the
generator is called, it will start at this statement. If send() is used, $timeout will take

this value.
$indexCurrentRun++;

yield 'X of bytes are missing. </br>"';

// Start using the generator
$generatorDataFromServer = generateDataFromServerDemo () ;
foreach ($generatorDataFromServer as S$numberOfRuns)
{
if (SnumberOfRuns < 10)
{

echo $numberOfRuns . "</br>";

}

else
{
SgeneratorDataFromServer->send (true); //sending data to the generator
echo $generatorDataFromServer->current (); //accessing the latest element (hinting how
many bytes are still missing.

}

Resulting in this Output:

0
1
2
3
4
3
6
7
]
9
X

bytes are missing.

Read Generators online: https://riptutorial.com/php/topic/1684/generators

https://riptutorial.com/ 203

https://i.stack.imgur.com/ipsO9.png
https://riptutorial.com/php/topic/1684/generators

C_hapter 38: Headers Manipulation

Examples

Basic Setting of a Header
Here is a basic setting of the Header to change to a new page when a button is clicked.

if (isset ($_REQUEST['action']))
{
switch ($_REQUEST['action'])
{ //Setting the Header based on which button is clicked
case 'getState':
header ("Location: http://NewPageForState.com/getState.php?search="
S_POST['search']);
break;
case 'getProject':
header ("Location: http://NewPageForProject.com/getProject.php?search="
S_POST['search']);
break;
}
else
{
GetSearchTerm (!NULL) ;
}
//Forms to enter a State or Project and click search
function GetSearchTerm($success)
{
if (is_null (Ssuccess))
{
echo "<h4>You must enter a state or project number</h4>";

}

echo "<center>Enter the State to search for</center><p></p>";

//Using the $_SERVER['PHP_SELF'] keeps us on this page till the switch above determines

where to go
echo "<form action='" . $_SERVER['PHP_SELF'] . "' enctype='multipart/form-data'
method="POST"'>
<input type='hidden' name='action' value='getState'>
<center>State: <input type='text' name='search' size='10'></center><p></p>
<center><input type='submit' name='submit' value='Search State'></center>

</form>";

GetSearchTermProject ($success) ;

function GetSearchTermProject ($success)

{

echo "<center>
Enter the Project to search for</center><p></p>";

echo "<form action='" . $_SERVER['PHP_SELF'] . "' enctype='multipart/form-data'
method='POST'>
<input type='hidden' name='action' value='getProject'>
<center>Project Number: <input type='text' name='search'
size='10'></center><p></p>

<center><input type='submit' name='submit' value='Search Project'></center>

</form>";

https://riptutorial.com/

204

?>

Read Headers Manipulation online: https://riptutorial.com/php/topic/3717/headers-manipulation

https://riptutorial.com/ 205

https://riptutorial.com/php/topic/3717/headers-manipulation

C_hapter 39: How to break down an URL

Introduction

As you code PHP you will most likely get your self in a position where you need to break down an
URL into several pieces. There's obviously more than one way of doing it depending on your
needs. This article will explain those ways for you so you can find what works best for you.

Examples

Using parse_url()

parse_url(): This function parses a URL and returns an associative array containing
any of the various components of the URL that are present.

Surl = parse_url ('http://example.com/project/controller/action/paraml/param2') ;

Array
(
[scheme] => http
[host] => example.com
[path] => /project/controller/action/paraml/param?

If you need the path separated you can use explode

Surl = parse_url ('http://example.com/project/controller/action/paraml/param2') ;
Surl['sections'] = explode('/', Surl['path']);

Array
(
[scheme] => http
[host] => example.com
[path] => /project/controller/action/paraml/param?2
[sections] => Array

(

=> project

=> controller
=> action

=> paraml

=> param?2

If you need the last part of the section you can use end() like this:

Slast = end(Surl['sections']);

https://riptutorial.com/ 206

If the URL contains GET vars you can retrieve those as well

Surl = parse_url ('http://example.com?varl=valuel&var2=valuel');

Array

(
[scheme] => http
[host] => example.com
[query] => varl=valuel&var2=value2

If you wish to break down the query vars you can use parse_str() like this:

Surl = parse_url ('http://example.com?varl=valuel&var2=valuel');

parse_str (Surl['query'], S$parts);
Array
(

[varl] => valuel

[var2] => value2

Using explode()

explode(): Returns an array of strings, each of which is a substring of string formed by
splitting it on boundaries formed by the string delimiter.

This function is pretty much straight forward.

Surl = "http://example.com/project/controller/action/paraml/param2";
Sparts = explode('/', $url);

Array

(
=> http:

=> example.com
=> project

=> controller
=> action

=> paraml

=> param?2

You can retrieve the last part of the URL by doing this:

Slast = end(Sparts);
// Output: param2

You can also navigate inside the array by using sizeof() in combination with a math operator like
this:

echo $parts([sizeof ($Sparts)-21];

https://riptutorial.com/ 207

// Output: paraml

Using basename()

basename(): Given a string containing the path to a file or directory, this function will
return the trailing name component.

This function will return only the last part of an URL

Surl = "http://example.com/project/controller/action/paraml/param2";
Sparts = basename ($url) ;
// Output: param2

If your URL has more stuff to it and what you need is the dir name containing the file you can use
it with dirname() like this:

Surl = "http://example.com/project/controller/action/paraml/param2/index.php";
Sparts = basename (dirname (Surl)) ;
// Output: param2

Read How to break down an URL online: https://riptutorial.com/php/topic/10847/how-to-break-
down-an-url

https://riptutorial.com/ 208

https://riptutorial.com/php/topic/10847/how-to-break-down-an-url
https://riptutorial.com/php/topic/10847/how-to-break-down-an-url

C_hapter 40: How to Detect Client IP Address

Examples

Proper use of HTTP_X FORWARDED FOR

In the light of the latest hitpoxy vulnerabilities, there is another variable, that is widely misused.

HTTP_x_FORWARDED_FOR IS Often used to detect the client IP address, but without any additional
checks, this can lead to security issues, especially when this IP is later used for authentication or
in SQL queries without sanitization.

Most of the code samples available ignore the fact that arre_x_rorwarpep_ror can actually be
considered as information provided by the client itself and therefore is not a reliable source to
detect clients IP address. Some of the samples do add a warning about the possible misuse, but
still lack any additional check in the code itself.

So here is an example of function written in PHP, how to detect a client IP address, if you know
that client may be behind a proxy and you know this proxy can be trusted. If you don't known any
trusted proxies, you can just USe rReMOTE_ADDR

function get_client_ip ()
{
// Nothing to do without any reliable information
if (!isset ($_SERVER['REMOTE_ADDR'])) {
return NULL;
t

// Header that is used by the trusted proxy to refer to
// the original IP
Sproxy_header = "HTTP_X_FORWARDED_FOR";

// List of all the proxies that are known to handle 'proxy_header'
// in known, safe manner
Strusted_proxies = array("2001:db8::1", "192.168.50.1");

if (in_array ($_SERVER['REMOTE_ADDR'], Strusted_proxies)) {

// Get IP of the client behind trusted proxy
if (array_key exists ($Sproxy_header, $_SERVER)) ({

// Header can contain multiple IP-s of proxies that are passed through.
// Only the IP added by the last proxy (last IP in the list) can be trusted.
Sclient_ip = trim(end(explode(",", S$_SERVER[S$Sproxy_header])));

// Validate just in case
if (filter_var(Sclient_ip, FILTER_VALIDATE_IP)) {
return $client_ip;
} else {
// Validation failed - beat the guy who configured the proxy or
// the guy who created the trusted proxy list?
// TODO: some error handling to notify about the need of punishment

https://riptutorial.com/ 209

https://httpoxy.org/

}

// In all other cases, REMOTE_ADDR is the ONLY IP we can trust.
return $_SERVER]['REMOTE_ADDR'];
}

print get_client_ip();

Read How to Detect Client IP Address online: https://riptutorial.com/php/topic/5058/how-to-detect-
client-ip-address

https://riptutorial.com/ 210

https://riptutorial.com/php/topic/5058/how-to-detect-client-ip-address
https://riptutorial.com/php/topic/5058/how-to-detect-client-ip-address

C_hapter 41: HTTP Authentication

Introduction

In this topic we gonna make a HTTP-Header authenticate script.

Examples

Simple authenticate

PLEASE NOTE: ONLY PUT THIS CODE IN THE HEADER OF THE PAGE, OTHERWISE IT
WILL NOT WORK!

<?php

if (!isset ($_SERVER['PHP_AUTH_USER'])) {
header ('WWW-Authenticate: Basic realm="My Realm"');
header ('HTTP/1.0 401 Unauthorized');
echo 'Text to send if user hits Cancel button';
exit;

}

echo "<p>Hello {$_SERVER['PHP_AUTH_USER']}.</p>";

Suser = $_SERVER['PHP_AUTH_USER']; //Lets save the information

echo "<p>You entered {$_SERVER['PHP_AUTH_PW']} as your password.</p>";

Spass = $_SERVER['PHP_AUTH_PW']; //Save the password(optionally add encryption) !
7>

//You html page

Read HTTP Authentication online: https://riptutorial.com/php/topic/8059/http-authentication

https://riptutorial.com/ 211

https://riptutorial.com/php/topic/8059/http-authentication

C_hapter 42: Image Processing with GD

Remarks

When using header ("Content-Type: $mimeType"); anNd image to generate only an image to the
output, be sure to output nothing else, note even a blank line after »>. (That can be a difficult 'bug’
to track down -- you get no image and no clue as to why.) The general advice is to not include ?>
at all here.

Examples

Creating an image
To create a blank image, use the imagecreatetruecolor function:

$img = imagecreatetruecolor ($Swidth, S$height);

simg IS NOW a resource variable for an image resource with swidthXsheight pixels. Note that width
counts from left to right, and height counts from top to bottom.

Image resources can also be created from image creation functions, such as:

® imagecreatefrompng

® imagecreatefromijpeg

4 Otherimagecreatefrom*funCﬁonS.

Image resources may be freed later when there are no more references to them. However, to free
the memory immediately (this may be important if you are processing many large images), using
imagedestroy () ON an image when it is no longer used might be a good practice.

imagedestroy ($Simage) ;

Enverting an image

Images created by image conversion does not modify the image until you output it. Therefore, an
image converter can be as simple as three lines of code:

function convertJpegToPng(string $filename, string SoutputFile) {
$im = imagecreatefromjpeg ($filename);
imagepng ($im, SoutputFile);
imagedestroy ($im) ;

Image output

https://riptutorial.com/ 212

http://php.net/manual/en/ref.image.php

An image can be created using :n-q-+ functions, where = is the file format.

They have this syntax in common:

bool image (resource $im [, mixed $to [other parameters]])

g/ing to afile

If you want to save the image to a file, you can pass the filename, or an opened file stream, as sto.
If you pass a stream, you don't need to close it, because GD will automatically close it.

For example, to save a PNG file:

imagepng (Simage, "/path/to/target/file.png");

Sstream = fopen ("phar://path/to/target.phar/file.png", "wb");
imagepng ($image2, $stream);
// Don't fclose ($stream)

When using ropen, make sure to use the » flag rather than the « flag, because the file is a binary
output.

Do not try t0 pass fopen ("php://temp", $f) OF fopen ("php://memory", $f) tO it. Since the stream is
closed by the function after the call, you will be unable to use it further, such as to retrieve its
contents.

Output as an HTTP response

If you want to directly return this image as the response of the image (e.g. to create dynamic
badges), you don't need to pass anything (or pass nu11) as the second argument. However, in the
HTTP response, you need to specify your content type:

header ("Content-Type: S$SmimeType");

smimeType IS the MIME type of the format you are returning. Examples include image/png, image/git
and image/jpeg.

Writing into a variable

There are two ways to write into a variable.
Using OB (Output Buffering)

ob_start () ;

https://riptutorial.com/ 213

http://php.net/manual/en/function.imagepng.php#refsect1-function.imagepng-seealso
http://php.net/manual/en/function.imagepng.php#refsect1-function.imagepng-seealso

imagepng ($image, null, S$quality); // pass null to supposedly write to stdout
Sbinary = ob_get_clean();

Using stream wrappers

You may have many reasons that you don't want to use output buffering. For example, you may
already have OB on. Therefore, an alternative is needed.

Using the stream_wrapper_register function, a new stream wrapper can be registered. Hence, you
can pass a stream to the image output function, and retrieve it later.

<?php

class GlobalStream{
private $var;

public function stream_open (string S$path) {
Sthis->var =& SGLOBALS[parse_url ($Spath) ["host"]];
return true;

public function stream_write (string S$data) {
$Sthis->var .= S$data;
return strlen ($data);

stream_wrapper_register ("global", GlobalStream::class);

Simage = imagecreatetruecolor (100, 100);
imagefill ($image, 0, 0, imagecolorallocate($image, 0, 0, 0));

Sstream = fopen ("global://myImage", "");
imagepng ($image, Sstream);
echo base64_encode (SmyImage) ;

In this example, the c1obaistream Class writes any input into the reference variable (i.e. indirectly
write to the global variable of the given name). The global variable can later be retrieved directly.

There are some special things to note:

» A fully implemented stream wrapper class should look like this, but according to tests with
the _ ca11 magic method, Only stream_open, stream_write and stream_close are called from
internal functions.

* No flags are required in the ropen call, but you should at least pass an empty string. This is
because the ropen function expects such parameter, and even if you don't use it in your
stream_open implementation, a dummy one is still required.

» According to tests, stream_write iS called multiple times. Remember to use .= (concatenation
assignment), not = (direct variable assignment).

Example usage

https://riptutorial.com/ 214

http://php.net/manual/en/stream.streamwrapper.example-1.php

In the HTML tag, an image can be directly provided rather than using an external link:

echo '';

Image Cropping and Resizing

If you have an image and want to create a new image, with new dimensions, you can use
imagecopyresampledfunCﬂon:

first create a new image With desired dimensions:

// new image
Sdst_img = imagecreatetruecolor (Swidth, S$height);

and store the original image into a variable. To do so, you may use one of the createimagefrom*
functions where * stands for:

jpeg

o gif

* png
string

For example:

//original image
Ssrc_img=imagecreatefromstring(file_get_contents ($Soriginal_image_path));

Now, copy all (or part of) original image (src_img) into the new image (dst_img) by

imagecopyresampled.

imagecopyresampled ($dst_img, $src_img,
$dst_x ,$dst_y, $src_x, $src_y,
$dst_width, $dst_height, $src_width, $src_height);

To set src_+ and ast_+» dimensions, use the below image:

https://riptutorial.com/

215

https://riptutorial.c

https://i.stack.imgur.com/6MFxN.jpg

https://riptutorial.com/php/topic/5195/image-processing-with-gd

https://riptutorial.com/ 217

https://riptutorial.com/php/topic/5195/image-processing-with-gd

C_hapter 43: Imagick

Examples

First Steps

Installation

Using apt on Debian based systems
sudo apt-get install php5-imagick
Using Homebrew on OSX/macOs

brew install imagemagick

To see the dependencies installed using the nrew method, visit brewformulas.org/Imagemagick.
Using binary releases
Instructions on imagemagick website.

Usage

<?php

$imagen = new Imagick ('imagen.Jjpg');
$imagen->thumbnailImage (100, 0);
//1if you put 0 in the parameter aspect ratio is maintained

echo $imagen;

?>

Convert Image into base64 String

This example is how to turn an image into a Base64 string (i.e. a string you can use directly in a
src attribute of an img tag). This example specifically uses the Imagick library (there are others
available, such as GD as well).

<?php
/**
* This loads in the file, image.jpg for manipulation.
* The filename path is releative to the .php file containing this code, so
* in this example, image.]jpg should live in the same directory as our script.
*/

$img = new Imagick ('image.jpg');

/**

https://riptutorial.com/ 218

http://brewformulas.org/Imagemagick
https://www.imagemagick.org/script/binary-releases.php#macosx
http://php.net/manual/en/intro.imagick.php
http://php.net/manual/en/intro.image.php

* This resizes the image, to the given size in the form of width, height.
* If you want to change the resolution of the image, rather than the size
* then $img->resampleimage (320, 240) would be the right function to use.

* Note that for the second parameter, you can set it to 0 to maintain the
* aspect ratio of the original image.
v

Simg->resizeImage (320, 240);

/**
* This returns the unencoded string representation of the image
v

SimgBuff = $img->getimageblob () ;

/**
* This clears the image.jpg resource from our $img object and destroys the
* object. Thus, freeing the system resources allocated for doing our image
* manipulation.
v

Simg->clear () ;

/*'k
* This creates the base64 encoded version of our unencoded string from
* earlier. It is then output as an image to the page.
*
* Note, that in the src attribute, the image/Jjpeg part may change based on
* the image type you're using (i.e. png, Jjpg etc).
v
$Simg = base64_encode ($imgBuff) ;
echo "";

Read Imagick online: https://riptutorial.com/php/topic/7682/imagick

https://riptutorial.com/

219

https://riptutorial.com/php/topic/7682/imagick

Chapter 44: IMAP

Examples

Install IMAP extension

To use the IMAP functions in PHP you'll need to install the IMAP extension:

Debian/Ubuntu with PHP5

sudo apt-get install php5-imap
sudo phpS5enmod imap

Debian/Ubuntu with PHP7

sudo apt-get install php7.0-imap
YUM based distro

sudo yum install php-imap
Mac OS X with php5.6

brew reinstall php56 —--with-imap

Connecting to a mailbox

To do anything with an IMAP account you need to connect to it first. To do this you need to specify
some required parameters:

» The server name or IP address of the mail server
* The port you wish to connect on

o IMAP is 143 or 993 (secure)

o POP is 110 or 995 (secure)

o SMTP is 25 or 465 (secure)

o NNTP is 119 or 563 (secure)
» Connection flags (see below)

imap, pop3,

imap
nntp, smtp

/service=service \Which service to use

/user=user remote user name for login on the server

/authuser=user remote authentication user; if specified this is

https://riptutorial.com/ 220

http://www.php.net/imap

the user name whose password is used (e.g.
administrator)

/anonymous remote access as anonymous user

record protocol telemetry in application's debug

/debug
log
do not transmit a plaintext password over the
/secure
network
, . do not use rsh or ssh to establish a
nors - .
preauthenticated IMAP session
Jeel use the Secure Socket Layer to encrypt the
SS

session
/validate-cert certificates from TLS/SSL server

do not validate certificates from TLS/SSL server,
/novalidate-cert needed if server uses self-signed certificates.
USE WITH CAUTION

force use of start-TLS to encrypt the session,

/tls and reject connection to servers that do not
support it
P do not do start-TLS to encrypt the session, even
no S
with servers that support it
request read-only mailbox open (IMAP only;
/readonly ignored on NNTP, and an error with SMTP and

POP3)

Your connection string will look something like this:

{imap.example.com:993/imap/tls/secure}

disabled

enabled

disabled

Please note that if any of the characters in your connection string is non-ASCII it must be encoded

with utf7_encode($string).

To connect to the mailbox, we use the imap open command which returns a resource value

pointing to a stream:

<?php
Smailbox = imap_open ("{imap.example.com:993/imap/tls/secure}", "username",
if (Smailbox === false) {

echo "Failed to connect to server";

"password") ;

https://riptutorial.com/

221

https://php.net/manual/en/function.imap-utf7-encode.php
https://secure.php.net/manual/en/function.imap-open.php

List all folders in the mailbox

Once you've connected to your mailbox, you'll want to take a look inside. The first useful command
is imap_list. The first parameter is the resource you acquired from imap_open, the second is your
mailbox string and the third is a fuzzy search string (+ is used to match any pattern).

Sfolders = imap_list (Smailbox, "{imap.example.com:993/imap/tls/secure}", "*");
if ($folders === false) {

echo "Failed to list folders in mailbox";
} else {

print_r ($folders);

The output should look similar to this

Array

(
=> {imap.example.com:993/imap/tls/secure}INBOX
=> {imap.example.com:993/imap/tls/secure}INBOX.Sent

]
]
[2] => {imap.example.com:993/imap/tls/secure}INBOX.Drafts
] => {imap.example.com:993/imap/tls/secure}INBOX.Junk
]

=> {imap.example.com:993/imap/tls/secure}INBOX.Trash

You can use the third parameter to filter these results like this:
Sfolders = imap_list (Smailbox, "{imap.example.com:993/imap/tls/secure}", "*.Sent");
And now the result only contains entries with .sent in the name:

Array

(
[0] => {imap.example.com:993/imap/tls/secure}INBOX. Sent

Note: Using * as a fuzzy search will return all matches recursively. If you use s it will return only
matches in the current folder specified.

Finding messages in the mailbox
You can return a list of all the messages in a mailbox using imap headers.

<?php
Sheaders = imap_headers ($mailbox) ;

The result is an array of strings with the following pattern:

[FLAG] [MESSAGE-ID]) [DD-MM-YYY] [FROM ADDRESS] [SUBJECT TRUNCATED TO 25 CHAR] ([SIZE] chars)

https://riptutorial.com/ 222

https://secure.php.net/manual/en/function.imap-list.php
https://secure.php.net/manual/en/function.imap-headers.php

Here's a sample of what each line could look like:

zZ o o p»

1)
2)
3)
4)19-Aug-2016 someoneflexample.com RE: RE: RE: Message Subje

A Answered Message has been replied to

D Deleted Message is deleted (but not removed)
F Flagged Message is flagged/stared for attention
N New Message is new and has not been seen
R Recent Message is new and has been seen

U Unread Message has not been read

X Draft Message is a draft

Note that this call could take a fair amount of time to run and may return a very large list.

19-Aug-2016 someone(@example.com Message Subject (1728 chars)
19-Aug-2016 someone@example.com RE: Message Subject (22840 chars)
19-Aug-2016 someone@example.com RE: RE: Message Subject (1876 chars)

(1741 chars)

An alternative is to load individual messages as you need them. Your emails are each assigned an

ID from 1 (the OldeSt) to the value of in- p_num_msg ($Smailbox).

There are a number of functions to access an email directly, but the simplest way is to use

imap_header Which returns structured header information:

<?php
Sheader = imap_headerinfo ($mailbox , 1);

stdClass Object

(
[date] => Wed, 19 Oct 2011 17:34:52 +0000
[subject] => Message Subject

[message_id] => <04b80ceedac8e74$51a8d50dd$0206600aRuserl1687763490>

[references] => <ecl29beef8all3c94ladb8bdaae9@example.com>
[toaddress] => Some One Else <someoneelsef@example.com>
[to] => Array
(
[0] => stdClass Object
(
[personal] => Some One Else
[mailbox] => someonelse

[host] => example.com

)
[fromaddress] => Some One <someone@example.com>
[from] => Array
(
[0] => stdClass Object

https://riptutorial.com/

223

https://secure.php.net/manual/en/function.imap-num-msg.php
https://secure.php.net/manual/en/function.imap-header.php

[personal] => Some One
[mailbox] => someone
[host] => example.com

)
[reply_toaddress] => Some One <someonelexample.com>
[reply_to] => Array
(
[0] => stdClass Object
(

[personal] => Some One
[mailbox] => someone
[host] => example.com
)
)
[senderaddress] => Some One <someone(@example.com>
[sender] => Array

(
[0] => stdClass Object

(

[personal] => Some One
[mailbox] => someone
[host] => example.com

)
[Recent] =>
[Unseen] =>
[Flagged] =>
[Answered] =>
[Deleted] =>
[Draft] =>
[Msgno] => 1
[MailDate] => 19-Oct-2011 17:34:48 +0000
[Size] => 1728
[udate] => 1319038488

Read IMAP online: https://riptutorial.com/php/topic/7359/imap

https://riptutorial.com/ 224

https://riptutorial.com/php/topic/7359/imap

C_hapter 45: Installing a PHP environment on
Windows

Remarks

HTTP services normally run on port 80, but if you have some application installed like Skype which
also utilizes port 80 then it won't start. In that case you need to change either its port or the port of
the conflicting application. When done, restart the HTTP service.

Examples

Download and Install XAMPP

What is XAMPP?

XAMPP is the most popular PHP development environment. XAMPP is a completely free, open-
source and easy to install Apache distribution containing MariaDB, PHP, and Perl.

Where should | download it from?

Download appropriate stable XAMPP version from their download page. Choose the download
based on the type of OS (32 or 64bit and OS version) and the PHP version it has to support.

Current latest being XAMPP for Windows 7.0.8 / PHP 7.0.8.
Or you can follow this:
XAMPP for Windows exists in three different flavors:

 Installer (Probably .exe format the easiest way to install XAMPP)
» ZIP (For purists: XAMPP as ordinary ZIP .zip format archive)
» 7zip: (For purists with low bandwidth: XAMPP as 7zip .7zip format archive)

How to install and where should | place my
PHP/html files?

Install with the provided installer

1. Execute the XAMPP server installer by double clicking the downloaded .cxe.

https://riptutorial.com/ 225

//www.apachefriends.org/download.html
//www.apachefriends.org/xampp-files/7.0.8/xampp-win32-7.0.8-0-VC14-installer.exe
https://sourceforge.net/projects/xampp/files/XAMPP%20Windows/7.0.8/xampp-portable-win32-7.0.8-0-VC14-installer.exe/download
https://sourceforge.net/projects/xampp/files/XAMPP%20Windows/7.0.8/xampp-portable-win32-7.0.8-0-VC14.zip/download
https://sourceforge.net/projects/xampp/files/XAMPP%20Windows/7.0.8/xampp-portable-win32-7.0.8-0-VC14.7z/download

Install from the ZIP

1. Unzip the zip archives into the folder of your choice.
2. XAMPP is extracting to the subdirectory c:\xampp below the selected target directory.
3. Now start the file setup_xampp.bat, t0 adjust the XAMPP configuration to your system.

Note: If you choose a root directory c:\ as target, you must not start setup_xampp.bat.

Post-Install

Use the "XAMPP Control Panel" for additional tasks, like starting/stopping Apache, MySQL,
FileZilla and Mercury or installing these as services.

File handling

The installation is a straight forward process and once the installation is complete you may add
html/php files to be hosted on the server in xauprp-root/htdocs/. Then start the server and open
http://localhost/file.php ON & browser to view the page.

Note: Default XAMPP root in Windows iS c: /xampp/htdocs/

Type in one of the following URLSs in your favourite web browser:

http://localhost/
http://127.0.0.1/

Now you should see the XAMPP start page.

https://riptutorial.com/

226

Apache Friends

XAMPP Apache + M

Welcome to XAMPP for Window

translation missing: en.You have successfully installed XAMPP on this sys
components. You can find more info in the FAQs section or check the HO!

Start the XAMPP Control Panel to check the server status.

Community

XAMPP has been around for more than 10 years - there is a huge commu
adding yourself to the Mailing List, and liking us on Facebook, following ol

Contribute to XAMPP translation at translate

Can you help translate XAMPP for other community members? We need y
set up a site, translate.apachefriends.org, where users can contribute tran

https://riptutorial.coH/ | g 227

ﬂnnnhn :':ﬂl‘lf‘ﬁ ﬂﬁﬂ n=+ﬁﬂmi Fa1 =) ﬂﬁﬂﬁﬂ'ﬂ+iﬁﬂ i R mﬂlfﬁ Hﬂ’ﬂhﬁ ﬁ'F F_1 o Pl o =Ta1H1

https://i.stack.imgur.com/8gS2c.jpg
https://sourceforge.net/projects/wampserver/files/WampServer%203/WampServer%203.0.0/wampserver3.0.4_x64_apache2.4.18_mysql5.7.11_php5.6.19-7.0.4.exe/download

« WampServer (32 BITS) 3
Providing currently:

* Apache: 2.4.18
* MySQL:5.7.11
* PHP:5.6.19& 7.0.4

Installation is simple, just execute the installer, choose the location and finish it.

Once that is done, you may start WampServer. Then it starts in the system tray (taskbar), initially
red in color and then turns green once the server is up.

You may goto a browser and type localhost or 127.0.0.1 to get the index page of WAMP. You
may work on PHP locally from now by storing the files in <paTu_to_wamp> /www/<php_or_html_file>
and check the result on http://localhost/<php_or_html_file_name>

Install PHP and use it with IIS

First of all you need to have IIS (Internet Information Services) installed and running on your
machine; IIS isn't available by default, you have to add the characteristic from Control Panel ->
Programs -> Windows Characteristics.

1. Download the PHP version you like from http://windows.php.net/download/ and make sure
you download the Non-Thread Safe (NTS) versions of PHP.

. Extract the files into c:\pup\.

. Open the tnternet Information Services Administrator IIS.

. Select the root item in the left panel.

. Double click on zandier Mappings.

. On the right side panel click on add Module Mapping.

. Setup the values like this:

~NOo ok WN

Request Path: *.php

Module: FastCgiModule

Executable: C:\PHP\php-cgi.exe

Name: PHP_FastCGI

Request Restrictions: Folder or File, All Verbs, Access: Script

8. Install vcredist_x64.exe O vcredist_x86.exe (Visual C++ 2012 Redistributable) from
https://www.microsoft.com/en-US/download/details.aspx?id=30679

9. Setup your c:\pup\php.ini, especially set the extension_dir ="c:\PHP\ext".
10. Reset IIS: In a DOS command console type 11sreskT.

Optionally you can install the PHP Manager for IS which is of great help to setup the ini file and
track the log of errors (doesn't work on Windows 10).

Remember to set index.php as one of the default documents for 1IS.

https://riptutorial.com/ 228

https://sourceforge.net/projects/wampserver/files/WampServer%203/WampServer%203.0.0/wampserver3.0.4_x86_apache2.4.18_mysql5.7.11_php5.6.19-7.0.4.exe/download
http://windows.php.net/download/
https://www.microsoft.com/en-US/download/details.aspx?id=30679
https://phpmanager.codeplex.com/

If you followed the installation guide now you are ready to test PHP.

Just like Linux, 1IS has a directory structure on the server, the root of this tree is
c:\inetpub\wwwroot\, here is the point of entry for all your public files and PHP scripts.

Now use your favorite editor, or just Windows Notepad, and type the following:

<?php
header ('Content-Type: text/html; charset=UTF-8');
echo '<html><head><title>Hello World</title></head><body>Hello world!</body></html>";

Save the file under c:\inetpub\wwwroot\index.php USING the UTF-8 format (without BOM).
Then open your brand new website using your browser on this address: hitp://localhost/index.php

Read Installing a PHP environment on Windows online:
https://riptutorial.com/php/topic/3510/installing-a-php-environment-on-windows

https://riptutorial.com/ 229

http://localhost/index.php
https://riptutorial.com/php/topic/3510/installing-a-php-environment-on-windows

C_hapter 46: Installing on Linux/Unix
Environments

Examples

Command Line Install Using APT for PHP 7

This will only install PHP. If you wish to serve a PHP file to the web you will also need
to install a web-server such as Apache, Nginx, or use PHP's built in web-server (php
version 5.4+).

If you are in a Ubuntu version below 16.04 and want to use PHP 7 anyway, you can
add Ondrej's PPA repository by doing: sudo add-apt-repository ppa:ondrej/php

Make sure that all of your repositories are up to date:

sudo apt-get update

After updating your system's repositories, install PHP:
sudo apt-get install php7.0

Let's test the installation by checking the PHP version:
php ——version

This should output something like this.

Note: Your output will be slightly different.

PHP 7.0.8-0Oubuntu0.16.04.1 (cli) (NTS)

Copyright (c) 1997-2016 The PHP Group

Zend Engine v3.0.0, Copyright (c) 1998-2016 Zend Technologies

with Zend OPcache v7.0.8-0ubuntu0.16.04.1, Copyright (c) 1999-2016, by Zend Technologies
with Xdebug v2.4.0, Copyright (c) 2002-2016, by Derick Rethans

You now have the capability to run PHP from the command line.
Installing in Enterprise Linux distributions (CentOS, Scientific Linux, etc)
Use the yum command to manage packages in Enterprise Linux-based operating systems:

yum install php

This installs a minimal install of PHP including some common features. If you need additional

https://riptutorial.com/ 230

http://www.apache.org/
https://www.nginx.com/
http://php.net/manual/en/features.commandline.webserver.php
https://launchpad.net/~ondrej/+archive/ubuntu/php/
https://en.wikipedia.org/wiki/Software_repository

modules, you will need to install them separately. Once again, you can use yum to search for these
packages:

yum search php-*

Example output:

php-bcmath.x86_64 : A module for PHP applications for using the bcmath library
php-cli.x86_64 : Command-line interface for PHP

php-common.x86_64 : Common files for PHP

php-dba.x86_64 : A database abstraction layer module for PHP applications
php-devel .x86_64 : Files needed for building PHP extensions

php-embedded.x86_64 : PHP library for embedding in applications

php-enchant .x86_64 : Human Language and Character Encoding Support
php-gd.x86_64 : A module for PHP applications for using the gd graphics library
php-imap.x86_64 : A module for PHP applications that use IMAP

To install the gd library:
yum install php-gd

Enterprise Linux distributions have always been conservative with updates, and typically do not
update beyond the point release they shipped with. A number of third party repositories provide
current versions of PHP:

e |US
* Remi Colette
* Webtatic

IUS and Webtatic provide replacement packages with different names (e.g. php56u Of phps6w tO
install PHP 5.6) while Remi's repository provides in-place upgrades by using the same names as
the system packages.

Following are instructions on installing PHP 7.0 from Remi's repository. This is the simplest
example, as uninstalling the system packages is not required.

download the RPMs; replace 6 with 7 in case of EL 7

wget https://dl.fedoraproject.org/pub/epel/epel-release-latest—-6.noarch.rpm

wget http://rpms.remirepo.net/enterprise/remi-release—6.rpm

install the repository information

rpm -Uvh remi-release-6.rpm epel-release-latest—-6.noarch.rpm

enable the repository

yum-config-manager --enable epel --enable remi --enable remi-safe --enable remi-php70
install the new version of PHP

NOTE: if you already have the system package installed, this will update it

yum install php

Read Installing on Linux/Unix Environments online: https://riptutorial.com/php/topic/3831/installing-
on-linux-unix-environments

https://riptutorial.com/ 231

https://ius.io/
http://www.remirepo.net
https://webtatic.com/
https://riptutorial.com/php/topic/3831/installing-on-linux-unix-environments
https://riptutorial.com/php/topic/3831/installing-on-linux-unix-environments

Introduction

JSON (JavaScript Object Notation) is a platform and language independent way of serializing
objects into plaintext. Because it is often used on web and so is PHP, there is a basic extension
for working with JSON in PHP.

Syntax

* string json_encode (mixed $value [, int $options = 0 [, int $depth =5121])
* mixed json_decode (string $json [, bool $assoc = false [, int $depth =512 [, int $options =0

1)

Parameters

json_encode

value

options

depth

json_decode
json

assocC

options

Remarks

The value being encoded. Can be any type except a resource. All string data
must be UTF-8 encoded.

Bitmask consisting of JSON_HEX_QUOT, JSON_HEX_TAG,
JSON_HEX_AMP, JSON_HEX_APOS, JSON_NUMERIC_CHECK,
JSON_PRETTY_PRINT, JSON_UNESCAPED_SLASHES,
JSON_FORCE_OBJECT, JSON_PRESERVE_ZERO_FRACTION,
JSON_UNESCAPED_UNICODE, JSON_PARTIAL_OUTPUT_ON_ERROR.
The behaviour of these constants is described on the JSON constants page.

Set the maximum depth. Must be greater than zero.

The json string being decoded. This function only works with UTF-8 encoded
strings.

Should function return associative array instead of objects.

Bitmask of JSON decode options. Currently only
JSON_BIGINT_AS_STRING is supported (default is to cast large integers as
floats)

https://riptutorial.com/ 232

http://www.json.org
https://en.wikipedia.org/wiki/JSON
https://secure.php.net/manual/en/book.json.php
http://php.net/manual/en/json.constants.php

» json_decode handling of invalid JSON is very flaky, and it is very hard to reliably determine
if the decoding succeeded, json_decode returns null for invalid input, even though null is also
a perfectly valid object for JSON to decode to. To prevent such problems you should
always call json_last_error every time you use it.

Examples

Decoding a JSON string

The json decode () function takes a JSON-encoded string as its first parameter and parses it into a
PHP variable.

Normally, 5son_decode () Will return an object of \stdClass if the top level item in the JSON object
is a dictionary or an indexed array if the JSON object is an array. It will also return scalar values
or nuwt for certain scalar values, such as simple strings, "true", "false", and "nu11". It also returns
NULL ON any error.

// Returns an object (The top level item in the JSON string is a JSON dictionary)
$jyson_string = '{"name": "Jeff", "age": 20, "active": true, "colors": ["red", "blue"]}';
Sobject = json_decode ($json_string);

printf ('Hello %s, You are %s years old.', $object->name, S$object->age);

#> Hello Jeff, You are 20 years old.

// Returns an array (The top level item in the JSON string is a JSON array)
$json_string = '["Jeff", 20, true, ["red", "blue"]]';

Sarray = json_decode ($json_string) ;

printf ('Hello %s, You are %s years old.', $array[0], S$SarrayI[l]);

Use -+ aump () tO view the types and values of each property on the object we decoded above.

// Dump our above S$object to view how it was decoded
var_dump ($object) ;

Output (note the variable types):

class stdClass#2 (4) {

["name"] => string(4) "Jeff"
["age"] => int (20)
["active"] => bool (true)
["colors"] =>

array (2) {

[0] => string(3) "red"
[1] => string(4) "blue"

Note: The variable types in JSON were converted to their PHP equivalent.

To return an associative array for JSON objects instead of returning an object, pass true as the
second parameter to json_decode ().

https://riptutorial.com/ 233

http://php.net/manual/en/function.json-decode.php
http://php.net/manual/en/reserved.classes.php
http://php.net/manual/en/function.var-dump.php
http://php.net/manual/en/language.types.array.php
http://php.net/manual/en/function.json-decode.php#refsect1-function.json-decode-parameters

$json_string = '{"name": "Jeff", "age": 20, "active": true, "colors": ["red", "blue"]}';
Sarray = Jjson_decode ($json_string, true); // Note the second parameter
var_dump ($Sarray) ;

Output (note the array associative structure):

array (4) |
["name"] => string(4) "Jeff"
["age"] => int (20)
["active"] => bool (true)
["colors"] =>
array (2) {

[0] => string(3) "red"
[1] => string(4) "blue"

The second parameter (sassoc) has no effect if the variable to be returned is not an object.

Note: If you use the sassoc parameter, you will lose the distinction between an empty array and an
empty object. This means that running json_encode () 0N your decoded output again, will result in a
different JSON structure.

If the JSON string has a "depth" more than 512 elements (20 elements in versions older than
5.2.3, or 128 in version 5.2.3) in recursion, the function json_decode () returns nurw. In versions 5.3
or later, this limit can be controlled using the third parameter (sdepth), as discussed below.

According to the manual:

PHP implements a superset of JSON as specified in the original » RFC 4627 - it will
also encode and decode scalar types and NULL. RFC 4627 only supports these values
when they are nested inside an array or an object. Although this superset is consistent
with the expanded definition of "JSON text" in the newer » RFC 7159 (which aims to
supersede RFC 4627) and » ECMA-404, this may cause interoperability issues with
older JSON parsers that adhere strictly to RFC 4627 when encoding a single scalar
value.

This means, that, for example, a simple string will be considered to be a valid JISON object in
PHP:

$json = json_decode ('"some string"', true);

var_dump ($json, Json_last_error_msg());
Output:

string(1ll) "some string"

string(8) "No error"

But simple strings, not in an array or object, are not part of the RFC 4627 standard. As a result,
such online checkers as JSLint, JSON Formatter & Validator (in RFC 4627 mode) will give you an

https://riptutorial.com/ 234

http://www.faqs.org/rfcs/rfc4627
http://www.faqs.org/rfcs/rfc7159
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.faqs.org/rfcs/rfc4627
http://www.jslint.com/
https://jsonformatter.curiousconcept.com/

error.

There is a third saepth parameter for the depth of recursion (the default value is s12), which means
the amount of nested objects inside the original object to be decoded.

There is a fourth soptions parameter. It currently accepts only one value, sson_BIGINT_AS_STRING.
The default behavior (which leaves off this option) is to cast large integers to floats instead of

strings.

Invalid non-lowercased variants of the true, false and null literals are no longer
accepted as valid input.

So this example:

var_dump (json_decode
var_dump (json_decode

var_dump
var_dump

var_dump (json_decode

(
(
(
(
(
(

var_dump (json_decode

json_decode
json_decode

(
(
(
(
(
(

, Json_last_error_msg());
, Json_last_error_msg());

, Json_last_error_msg());

, Json_last_error_msg());

, Json_last_error_msg());

))
))
))
))
))
)) i

, Json_last_error_msg());

Before PHP 5.6:

bool (true)
string(8)
bool (true)
string(8)
bool (true)
string(8)
bool (true)
string(8)
bool (true)
string(8)
bool (true)
string(8)

And after:

NULL
string (12)
NULL
string (12)
NULL
string (12)
NULL
string (12)
NULL
string (12)
bool (true)
string (8)

"No error"

"No error"
"No error"
"No error"
"NO

error"

"No error"

"Syntax

"Syntax

"Syntax

"Syntax

error"

error"

error"

error"

"Syntax error"

"No error"

Similar behavior occurs for faise and nu11.

Note that json_decode () Will return nuww if the string cannot be converted.

https://riptutorial.com/

235

Sjson = "{'name': 'Jeff', 'age': 20 }" ; // invalid json

$person = json_decode ($json);

echo S$person->name; // Notice: Trying to get property of non-object: returns null
echo json_last_error();

4 (JSON_ERROR_SYNTAX)

echo json_last_error_msg();

unexpected character

It is not safe to rely only on the return value being ~nuwrw to detect errors. For example, if the JSON
string contains nothing but "nu11", json_decode () Will return nu11, even though no error occurred.

Encoding a JSON string

The json _encoae function will convert a PHP array (or, since PHP 5.4, an object which implements
the ssonserializable interface) to a JSON-encoded string. It returns a JSON-encoded string on
success or FALSE on failure.

Sarray = [
'name' => 'Jeff',
'age' => 20,
'active' => true,
'colors' => ['red', 'blue'],
'values' => [0=>"'foo', 3=>'bar'],

17

During encoding, the PHP data types string, integer, and boolean are converted to their JSON
equivalent. Associative arrays are encoded as JSON objects, and — when called with default
arguments — indexed arrays are encoded as JSON arrays. (Unless the array keys are not a
continuous numeric sequence starting from 0, in which case the array will be encoded as a JSON
object.)

echo json_encode ($array) ;

Output:
{"name":"Jeff", "age":20, "active":true, "colors": ["red", "blue"], "values": {"0":"foo","3":"bar"}}
Arguments

Since PHP 5.3, the second argument to json_encode iS @ bitmask which can be one or more of the
following.

As with any bitmask, they can be combined with the binary OR operator |.

PHP 5.x5.3

JSON_FORCE_OBJECT

https://riptutorial.com/ 236

http://php.net/manual/en/function.json-encode.php
http://php.net/manual/en/json.constants.php#constant.json-force-object

Forces the creation of an object instead of an array

Sarray = ['Joel', 23, true, ['red', 'blue'll;
echo json_encode ($array) ;
echo json_encode ($array, JSON_FORCE_OBJECT) ;

Output:

["Joel", 23, true, ["red", "blue"]]
{IIOII:IIJoel", lllll:23, ll2'l:true, "3"2{"0":"3’_'ed", lll'l:'lbluell}}

JSON_HEX_TAG, JSON_HEX AMP, JSON_HEX_ APOS, JSON_HEX_ QUOT

Ensures the following conversions during encoding:

JSON_HEX_TAG < \u003C
JSON_HEX_TAG > \u003E
JSON_HEX_AMP & \u0026
JSON_HEX_APOS ' \u0027
JSON_HEX_QUOT " \u0022
Sarray = ["tag"=>"<>", "amp"=>"&", "apos"=>"'", "quot"=>"\""];

echo json_encode ($array) ;
echo json_encode ($array, JSON_HEX_TAG | JSON_HEX_AMP | JSON_HEX_APOS | JSON_HEX_QUOT) ;

Output:

{"tag" g Ul llampll QU llaposll QWU llquotll AN iy
{"tag":"\u003C\uO03E", "amp":"\u0026", "apos":"\u0027", "quot":"\u0022"}

PHP 5.x5.3
JSON_NUMERIC_CHECK

Ensures numeric strings are converted to integers.

Sarray = ['23452', 23452];
echo json_encode ($array) ;
echo json_encode ($Sarray, JSON_NUMERIC_CHECK) ;

Output:

["23452",23452]
[23452,23452]

https://riptutorial.com/ 237

http://php.net/manual/en/json.constants.php#constant.json-hex-tag
http://php.net/manual/en/json.constants.php#constant.json-hex-amp
http://php.net/manual/en/json.constants.php#constant.json-hex-apos
http://php.net/manual/en/json.constants.php#constant.json-hex-quot
http://php.net/manual/en/json.constants.php#constant.json-numeric-check

PHP 5.x5.4
JSON_PRETTY PRINT

Makes the JSON easily readable

Sarray = ['a' => 1, 'b' => 2, 'c' => 3, 'd' => 4];
echo json_encode ($array) ;
echo json_encode ($array, JSON_PRETTY_PRINT);

Output:

{"a":1,"b":2,"c":3,"d":4}
{
"a":
"p":
Vg g
"an:

~

sw N
~

JSON_UNESCAPED_SLASHES

Includes unescaped / forward slashes in the output

Sarray = ['filename' => 'example.txt', 'path' => '/full/path/to/file/'];
echo json_encode ($array) ;
echo json_encode ($array, JSON_UNESCAPED_SLASHES) ;

Output:

{"filename":"example.txt", "path":"\/full\/path\/to\/file"}
{"filename":"example.txt", "path":"/full/path/to/file"}

JSON_UNESCAPED_UNICODE

Includes UTF8-encoded characters in the output instead of \u-encoded strings

Sblues = ["english"=>"blue", "norwegian"=>"bla", "german"=>"blau"];
echo json_encode ($blues) ;
echo json_encode ($blues, JSON_UNESCAPED_UNICODE) ;

Output:

{"english":"blue", "norwegian":"b1l\u00e5", "german":"blau"}
{"english":"blue", "norwegian":"bla", "german":"blau"}

PHP 5.x5.5
JSON_PARTIAL OUTPUT ON_ERROR

Allows encoding to continue if some unencodable values are encountered.

https://riptutorial.com/ 238

http://php.net/manual/en/json.constants.php#constant.json-pretty-print
http://php.net/manual/en/json.constants.php#constant.json-unescaped-slashes
http://php.net/manual/en/json.constants.php#constant.json-unescaped-unicode
http://php.net/manual/en/json.constants.php#constant.json-partial-output-on-error

Sfp = fopen("foo.txt", "r");

Sarray = ["file"=>$fp, "name"=>"foo.txt"];

echo json_encode (Sarray); // no output

echo json_encode ($array, JSON_PARTIAL_OUTPUT_ON_ERROR) ;

Output:
{"file":null, "name":"foo.txt"}
PHP 5.x5.6

JSON_PRESERVE_ZERO_FRACTION

Ensures that floats are always encoded as floats.

Sarray = [5.0, 5.5];
echo json_encode ($array) ;
echo json_encode ($array, JSON_PRESERVE_ZERO_FRACTION) ;

Output:

[5,5.5]
[5.0,5.5]

PHP 7.x7.1

JSON_UNESCAPED_LINE_TERMINATORS

When used with sson_unescapep_untcope, reverts to the behaviour of older PHP versions, and does
not escape the characters U+2028 LINE SEPARATOR and U+2029 PARAGRAPH SEPARATOR.
Although valid in JSON, these characters are not valid in JavaScript, so the default behaviour of
JSON_UNESCAPED_UNTCODE Was changed in version 7.1.

Sarray = ["line"=>"\xe2\x80\xa8", "paragraph"=>"\xe2\x80\xad9"];
echo json_encode ($array, JSON_UNESCAPED_UNICODE) ;
echo json_encode ($array, JSON_UNESCAPED_UNICODE | JSON_UNESCAPED_LINE_TERMINATORS) ;

Output:

{"line":"\u2028", "paragraph":"\u2029"}
{"line" B "D "’ "paragraph" B "D "}

Debugging JSON errors

When json_encode OF json_decode fails to parse the string provided, it will return raise. PHP itself will
not raise any errors or warnings when this happens, the onus is on the user to use the

json_last _error() and json_last_error_msg() functions to check if an error occurred and act
accordingly in your application (debug it, show an error message, etc.).

The following example shows a common error when working with JSON, a failure to

https://riptutorial.com/ 239

http://php.net/manual/en/json.constants.php#constant.json-preserve-zero-fraction
http://php.net/manual/en/json.constants.php#constant.json-unescaped-line-terminators
http://php.net/manual/en/function.json-last-error.php
http://php.net/manual/en/function.json-last-error-msg.php

decode/encode a JSON string (due to the passing of a bad UTF-8 encoded string, for example).

// An incorrectly formed JSON string
$jsonString = json_encode ("{'Bad JSON':\xB1\x31}1");

if (json_last_error() != JSON_ERROR_NONE) {
printf ("JSON Error: %s", Jjson_last_error_msg());

#> JSON Error: Malformed UTF-8 characters, possibly incorrectly encoded

json_last_error_msg

json_last error msg () returns a human readable message of the last error that occurred when
trying to encode/decode a string.

» This function will always return a string, even if no error occurred.
The default non-error string is no Error
It will return ra1se if some other (unknown) error occurred

» Careful when using this in loops, as json_last error_msg will be overridden on each iteration.

You should only use this function to get the message for display, not to test against in control
statements.

// Don't do this:

if (json_last_error_msg()){} // always true (it's a string)

if (json_last_error_msg() != "No Error"){} // Bad practice

// Do this: (test the integer against one of the pre-defined constants)
if (json_last_error() != JSON_ERROR_NONE) {

// Use json_last_error_msg to display the message only, (not test against it)
printf ("JSON Error: %s", json_last_error_msg());

This function doesn't exist before PHP 5.5. Here is a polyfill implementation:

if (!function_exists('json_last_error_msg')) {
function json_last_error_msg () {

static $ERRORS = array (
JSON_ERROR_NONE => 'No error',
JSON_ERROR_DEPTH => 'Maximum stack depth exceeded',
JSON_ERROR_STATE_MISMATCH => 'State mismatch (invalid or malformed JSON) ',
JSON_ERROR_CTRL_CHAR => 'Control character error, possibly incorrectly encoded',
JSON_ERROR_SYNTAX => 'Syntax error',
JSON_ERROR_UTF8 => 'Malformed UTF-8 characters, possibly incorrectly encoded'

)i

Serror = json_last_error();
return isset (SERRORS[Serror]) ? SERRORS[S$error] : 'Unknown error';

json_last_error

https://riptutorial.com/

240

http://php.net/manual/en/function.json-last-error-msg.php
http://php.net/manual/en/function.json-last-error-msg.php
http://php.net/manual/en/function.json-last-error-msg.php
http://php.net/manual/en/function.json-last-error.php

json_last_error () returns an integer mapped to one of the pre-defined constants provided by
PHP.

JSON_ERROR_NONE No error has occurred

JSON_ERROR_DEPTH The maximum stack depth has been exceeded
JSON_ERROR_STATE_MISMATCH Invalid or malformed JSON

JSON_ERROR_CTRL_CHAR Control character error, possibly incorrectly encoded
JSON_ERROR_SYNTAX Syntax error (since PHP 5.3.3)

Malformed UTF-8 characters, possibly incorrectly encoded
(since PHP 5.5.0)

JSON_ERROR_UTF8

JSON_ERROR_RECURSTON One or more recursive references in the value to be encoded
JSON_ERROR_INF_OR_NAN One or more NAN or INF values in the value to be encoded

JSON_ERROR_UNSUPPORTED_TYPE A value of a type that cannot be encoded was given

Using JsonSerializable in an Object

PHP 5.x5.4

When you build REST API's, you may need to reduce the information of an object to be passed to
the client application. For this purpose, this example illustrates how to use the ssonserialiazble
interface.

In this example, the class user actually extends a DB model object of a hypotetical ORM.

class User extends Model implements JsonSerializable {
public $id;
public S$name;
public $surname;
public S$Susername;
public $password;
public S$email;
public $date_created;
public S$date_edit;
public Srole;
public $status;

public function jsonSerialize () {
return [
'name' => $this->name,
'surname' => $this->surname,
'username' => S$this->username

https://riptutorial.com/ 241

http://php.net/manual/en/function.json-last-error.php

Add ssonserializable implementation to the class, by providing the jsonserialize () method.

public function jsonSerialize ()

Now in your application controller or script, when passing the object User to json_encode () you Will
get the return json encoded array of the jsonserialize () method instead of the entire object.

json_encode ($User) ;

Will return:

{"name" :"John", "surname":"Doe", "username" : "TestJson"}

properties values example.

This will both reduce the amount of data returned from a RESTful endpoint, and allow to exclude
object properties from a json representation.

Using Private and Protected Properties With jsen encode(

To avoid using JsonSerializable, it is also possible to use private or protected properties to hide
class information from json_encode () output. The Class then does not need to implement
\JsonSerializable.

The json_encode() function will only encode public properties of a class into JSON.

<?php

class User {
// private properties only within this class
private $id;
private $date_created;
private $date_edit;

// properties used in extended classes
protected $password;

protected S$email;

protected $role;

protected $status;

// share these properties with the end user
public S$name;

public S$surname;

public S$Susername;

// JjsonSerialize () not needed here

https://riptutorial.com/ 242

StheUser = new User();

var_dump (json_encode ($theUser)) ;

Output:

string(44) "{"name":null, "surname":null, "username":null}"

Header json and the returned response
By adding a header with content type as JSON:

<?php
Sresult = array('menul' => 'home', 'menu2' => 'code php',

//return the Jjson response :

header ('Content-Type: application/json'); // <—— header declaration

echo json_encode (Sresult, true); // <-—— encode
exit ();

The header is there so your app can detect what data was returned and how it should handle it.
Note that : the content header is just information about type of returned data.

If you are using UTF-8, you can use :

header ("Content-Type: application/json;charset=utf-8");
Example jQuery :

$S.ajax ({
url:'url_your_page_php_that_return_json'
}) .done (function (data) {
console.table('json ',data);
console.log('Menul : ', data.menul);
1)

Read JSON online: https://riptutorial.com/php/topic/617/json

=> 'about');

https://riptutorial.com/

243

https://riptutorial.com/php/topic/617/json

C_hapter 48: Localization

Syntax

® string gettext (string S$message)

Examples

Localizing strings with gettext()
GNU gettext is an extension within PHP that must be included at the php. ini:

extension=php_gettext.dll #Windows
extension=gettext.so #Linux

The gettext functions implement an NLS (Native Language Support) API which can be used to
internationalize your PHP applications.

Translating strings can be done in PHP by setting the locale, setting up your translation tables and
calling gettext () On any string you want to translate.

<?php
// Set language to French
putenv ('LC_ALL= fr_FR'");

setlocale (LC_ALL, 'fr_FR'");

// Specify location of translation tables for 'myPHPApp' domain
bindtextdomain ("myPHPApp", "./locale");

// Select 'myPHPApp' domain
textdomain ("myPHPApp") ;

myPHPApp.po

#: /Hello_world.php:56
msgid "Hello"
msgstr "Bonjour"

#: /Hello_world.php:242
msgid "How are you?"
msgstr "Comment allez-vous?"

gettext() loads a given post-complied .po file, a .mo. which maps your to-be translated strings as
above.

After this small bit of setup code, translations will now be looked for in the following file:

® ./locale/fr FR/LC_MESSAGES/myPHPApp.mo.

https://riptutorial.com/ 244

Whenever you call gettext (*some string'), If 'some string' has been translated in the .no file, the
translation will be returned. Otherwise, 'some string' Will be returned untranslated.

// Print the translated version of 'Welcome to My PHP Application'
echo gettext ("Welcome to My PHP Application");

// Or use the alias _ () for gettext ()
echo _ ("Have a nice day");

Read Localization online: https://riptutorial.com/php/topic/2963/localization

https://riptutorial.com/ 245

https://riptutorial.com/php/topic/2963/localization

C_hapter 49: Loops

Introduction

Loops are a fundamental aspect of programming. They allow programmers to create code that
repeats for some given number of repetitions, or iterations. The number of iterations can be
explicit (6 iterations, for example), or continue until some condition is met (‘until Hell freezes over").

This topic covers the different types of loops, their associated control statements, and their
potential applications in PHP.

Syntax

« for (init counter; test counter; increment counter) { /* code */ }
» foreach (array as value) { /* code */ }

» foreach (array as key => value) { /* code */ }

» while (condition) { /* code */ }

* do { /* code */ } while (condition);

» anyloop { continue; }

» anyloop { [anyloop ...] { continue int; } }

» anyloop { break; }

» anyloop { [anyloop ...] { break int; } }

Remarks

It is often useful to execute the same or similar block of code several times. Instead of copy-
pasting almost equal statements loops provide a mechanism for executing code a specific number
of times and walking over data structures. PHP supports the following four types of loops:

for

while

do. .while
foreach

To control these loops, continue and break Statements are available.

Examples

for

The ror statement is used when you know how many times you want to execute a
statement or a block of statements.

The initializer is used to set the start value for the counter of the number of loop iterations. A
variable may be declared here for this purpose and it is traditional to name it si.

https://riptutorial.com/ 246

The following example iterates 10 times and displays numbers from O to 9.

for ($i = 0; $i <= 9; S$i++) {
echo $i, ',';

Example 2
for ($i = 0; ; Si++) {
if ($1i > 9) {
break;
}

echo $i, ',';

Example 3

$i = 0;
for (; 7) |
if ($1i > 9) {
break;

}
echo $i, ',';
Sit+;

Example 4
for ($i = 0, $j = 0; $1 <= 9; $J += $i, print $i. ',', Si++);

The expected output is:

0,1,2,3,4,5,6,7,8,9,

foreach

The roreach Statement is used to loop through arrays.

For each iteration the value of the current array element is assigned to svaiue variable and the
array pointer is moved by one and in the next iteration next element will be processed.

The following example displays the items in the array assigned.

$list = ['apple', 'banana', 'cherry'];

foreach ($list as $value) {
echo "I love to eat {S$value}. ";

The expected output is:

I love to eat apple. I love to eat banana. I love to eat cherry.

You can also access the key / index of a value using foreach:

foreach ($1list as S$key => S$value) {

https://riptutorial.com/

247

echo $key . ":" . Svalue . " ";

}

//Outputs — O:apple 1:banana 2:cherry

By default svaiue is a copy of the value in s1ist, SO changes made inside the loop will not be
reflected in s1ist afterwards.

foreach ($list as $value) {

Svalue = $value . " pie";
}
echo $1ist([0]; // Outputs "apple"

To modify the array within the foreach lOOp, use the « operator to assign svaiue by reference. It's
important to unset the variable afterwards so that reusing svaiue elsewhere doesn't overwrite the
array.

foreach ($1list as &S$Svalue) { // Or foreach ($list as Skey => &$value) {
Svalue = S$value . " pie";

}
unset ($value) ;
echo $1ist[0]; // Outputs "apple pie"

You can also modify the array items within the roreach loOp by referencing the array key of the
current item.

foreach ($1list as $key => S$value) {
$list[$key] = $value . " pie";

}

echo $1ist([0]; // Outputs "apple pie"

break

The vreak keyword immediately terminates the current loop.

Similar to the continue Statement, a break halts execution of a loop. Unlike a continue Statement,
however, nreax causes the immediate termination of the loop and does not execute the conditional
statement again.

$i = 5;
while (true) {
echo 120/$1i.PHP_EOL;
$1 -= 1;
if ($1 == 0) {
break;

This code will produce

24

https://riptutorial.com/ 248

30
40
60
120

but will not execute the case where si is 0, which would result in a fatal error due to division by 0.

The break statement may also be used to break out of several levels of loops. Such behavior is
very useful when executing nested loops. For example, to copy an array of strings into an output
string, removing any # symbols, until the output string is exactly 160 characters

Soutput = "";
Sinputs = array(
"#soblessed #throwbackthursday",
"happy tuesday",
"#nofilter",
/* more inputs */
)i
foreach ($inputs as $input) {
for($i = 0; $i < strlen(S$input); $i += 1) {

if ($input[$i] == '#') continue;
Soutput .= S$input[$i];
if (strlen($Soutput) == 160) break 2;
}
Soutput .= ' ';

The nreax 2 command immediately terminates execution of both the inner and outer loops.

do...while

The «o...wnile Statement will execute a block of code at least once - it then will repeat
the loop as long as a condition is true.

The following example will increment the value of s: at least once, and it will continue
incrementing the variable si as long as it has a value of less than 25;

Si++;
} while ($1i < 25);

echo 'The final value of 1 is: ', $i;

The expected output is:

The final value of i is: 25

continue

The continue keyword halts the current iteration of a loop but does not terminate the
loop.

https://riptutorial.com/ 249

Just like the break statement the continue Statement is situated inside the loop body. When
executed, the continue Statement causes execution to immediately jump to the loop conditional.

In the following example loop prints out a message based on the values in an array, but skips a
specified value.

$list = ['apple', 'banana', 'cherry'];

foreach ($1list as $value) {
if ($value == 'banana') {
continue;

}
echo "I love to eat {S$Svalue} pie.".PHP_EOL;

The expected output is:

I love to eat apple pie.
I love to eat cherry pie.

The continue Statement may also be used to immediately continue execution to an outer level of a
loop by specifying the number of loop levels to jump. For example, consider data such as

Apple Red 1
Banana Yellow 7
Cherry Red 2

Grape Green 4

In order to only make pies from fruit which cost less than 5

Sdata = [
["Fruit" => "Apple", "Color" => "Red", "Cost" =>1 1,
["Fruit" => "Banana", "Color" => "Yellow", "Cost" => 7],
["Fruit" => "Cherry", "Color" => "Red", "Cost" => 2 1,
["Fruit" => "Grape", "Color" => "Green", "Cost" => 4]

17

foreach ($data as S$Sfruit) {
foreach ($fruit as S$key => S$Svalue) {
if (Skey == "Cost" && S$value >= 5) {
continue 2;

}

/* make a pie */

When the continue 2 Statement is executed, execution immediately jumps back to sdata as sfruit

https://riptutorial.com/ 250

continuing the outer loop and skipping all other code (including the conditional in the inner loop.

while

The whi1e statement will execute a block of code if and as long as a test expression is
true.

If the test expression is true then the code block will be executed. After the code has executed the
test expression will again be evaluated and the loop will continue until the test expression is found
to be false.

The following example iterates till the sum reaches 100 before terminating.

$i = true;
Ssum = 0;
while ($1) {
if ($sum === 100) {
$i = false;
} else {

Ssum += 10;
}
}

echo 'The sum is: ', S$sum;

The expected output is:

The sum is: 100

Read Loops online: https://riptutorial.com/php/topic/2213/loops

https://riptutorial.com/ 251

https://riptutorial.com/php/topic/2213/loops

C_hapter 50: Machine learning

Remarks

The topic uses PHP-ML for all machine learning algorithms. The installation of the library can be
done using

composer require php-ai/php-ml

The github repository for the same can be found here.

Also it is worth noting that the examples given are very small data-set only for the purpose of
demonstration. The actual data-set should be more comprehensive than that.

Examples

Classification using PHP-ML

Classification in Machine Learning is the problem that identifies to which set of categories does a
new observation belong. Classification falls under the category of supervised Machine Learning.

Any algorithm that implements classification is known as classifier
The classifiers supported in PHP-ML are

* SVC (Support Vector Classification)
» k-Nearest Neighbors
* Naive Bayes

The train and predict method are same for all classifiers. The only difference would be in the
underlying algorithm used.

SVC (Support Vector Classification)

Before we can start with predicting a new observation, we need to train our classifier. Consider the
following code

// Import library
use Phpml\Classification\SVC;
use Phpml\SupportVectorMachine\Kernel;

// Data for training classifier
$samples = [[1, 31, [1, 41, [2, 41, [3, 11, 1[4, 11, [4, 2]1; // Training samples
$labels = [VaV, 'a', VaV, 'b', VbV, 'b'];

// Initialize the classifier

https://riptutorial.com/ 252

https://github.com/php-ai/php-ml

Sclassifier = new SVC (Kernel::LINEAR, S$cost = 1000);
// Train the classifier
Sclassifier->train ($samples, $labels);

The code is pretty straight forward. scost used above is a measure of how much we want to avoid
misclassifying each training example. For a smaller value of scost you might get misclassified
examples. By default it is setto 1.0

Now that we have the classifier trained we can start making some actual predictions. Consider the
following codes that we have for predictions

$classifier—>predict ([3, 21); // return 'b'
Sclassifier—->predict ([[3, 2], [1, 5]11); // return ['b', 'a']

The classifier in the case above can take unclassified samples and predicts there labels. predict
method can take a single sample as well as an array of samples.

k-Nearest Neighbors

The classfier for this algorithm takes in two parameters and can be initialized like

Sclassifier = new KNearestNeighbors ($neighbor_num=4) ;
Sclassifier = new KNearestNeighbors ($neighbor_num=3, new Minkowski ($lambda=4));

sneighbor_num IS the number of nearest neighbours to scan in knn algorithm while the second
parameter is distance metric which by default in first case would be suc1idean. More on Minkowski
can be found here.

Following is a short example on how to use this classifier

// Training data
$samples = [[1, 3], [1, 41, [2, 4], [3, 11, (4, 11, [4, 211;
Slabels = [vav, vav, vav, 'b', vbv, 'b'];

// Initialize classifier

Sclassifier = new KNearestNeighbors();
// Train classifier

Sclassifier->train ($samples, S$labels);

// Make predictions

Sclassifier—->predict ([3, 2]); // return 'b'
Sclassifier—->predict ([[3, 2], [1, 5]1); // return ['b', 'a']

N_aiveBayes Classifier

NaiveBayes Classifier IS based On Bayes' theorem and does not need any parameters in
constructor.

https://riptutorial.com/ 253

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/Minkowski_distance

The following code demonstrates a simple prediction implementation

// Training data
$samp1es = [t5, 1, 11, 1, 5, 11, (i, 1, 511;
Slabels = ['a', 'b', 'c']l;

// Initialize classifier

Sclassifier = new NaiveBayes () ;

// Train classifier
Sclassifier->train ($samples, $labels);

// Make predictions
Sclassifier->predict ([3, 1, 11); // return 'a'
Sclassifier—->predict ([[3, 1, 11, [1, 4, 11); // return ['a', 'b']

Practical case

Till now we only used arrays of integer in all our case but that is not the case in real life. Therefore
let me try to describe a practical situation on how to use classifiers.

Suppose you have an application that stores characteristics of flowers in nature. For
the sake of simplicity we can consider the color and length of petals. So there two
characteristics would be used to train our data. co1or is the simpler one where you can
assign an int value to each of them and for length, you can have a range like (0 mm, 10
mm)=1 , (10 mm, 20 mm)=2. With the initial data train your classifier. Now one of your user
needs identify the kind of flower that grows in his backyard. What he does is select the
color Of the flower and adds the length of the petals. You classifier running can detect
the type of flower ("Labels in example above")

Regression

In classification using rap-u1. We assigned labels to new observation. Regression is almost the
same with difference being that the output value is not a class label but a continuous value. It is
widely used for predictions and forecasting. PHP-ML supports the following regression algorithms

» Support Vector Regression
e LeastSquares Linear Regression

Regression has the same train and predict methods as used in classification.

Support Vector Regression

This is the regression version for SVM(Support Vector Machine).The first step like in classification
is to train our model.

// Import library
use Phpml\Regression\SVR;
use Phpml\SupportVectorMachine\Kernel;

https://riptutorial.com/ 254

// Training data
Ssamples = [[60], [61]1, [62], [63], [65]];
Stargets = [3.1, 3.6, 3.8, 4, 4.1];

// Initialize regression engine
Sregression = new SVR(Kernel::LINEAR);
// Train regression engine
Sregression->train ($samples, S$targets);

In regression stargets are not class labels as opposed to classification. This is one of the
differentiating factor for the two. After training our model with the data we can start with the actual
predictions

Sregression->predict ([64]) // return 4.03

Note that the predictions return a value outside the target.

LeastSquares Linear Regression

This algorithm uses 1east squares method t0 approximate solution. The following demonstrates a
simple code of training and predicting

// Training data
S$samples = [[60], [61], [62], [63], [65]];
Stargets = [3.1, 3.6, 3.8, 4, 4.1];

// Initialize regression engine
Sregression = new LeastSquares();

// Train engine

Sregression->train ($samples, Stargets);

// Predict using trained engine
Sregression->predict ([64]); // return 4.06

PHP-ML also provides with the option of Muitiple Linear Regression. A Sample code for the same
can be as follows

Ssamples = [[73676, 1996], [77006, 19981, [10565, 2000], [146088, 1995], [15000, 20011,
[65940, 2000], [9300, 20001, [93739, 19%6], [153260, 1994], [17764, 2002], [57000, 1998],
[15000, 2000]11;

Stargets = [2000, 2750, 15500, 960, 4400, 8800, 7100, 2550, 1025, 5900, 4600, 4400];

Sregression = new LeastSquares|();
Sregression->train ($samples, Stargets);
Sregression—->predict ([60000, 1996]) // return 4094.82

Multiple Linear Regression IS particularly useful when multiple factors or traits identify the outcome.

Practical case

Now let us take an application of regression in real life scenario.

https://riptutorial.com/ 255

Suppose you run a very popular website, but the traffic keeps on changing. You want a
solution that would predict the number of servers you need to deploy at any given
instance of time. Lets assume for the sake that your hosting provider gives you an api
to spawn out servers and each server takes 15 minutes to boot. Based on previous
data of traffic, and regression you can predict the traffic that would hit your application
at any instance of time. Using that knowledge you can start a server 15 minutes before
the surge thereby preventing your application from going offline.

Clustering

Clustering is about grouping similar objects together. It is widely used for pattern recognition.
Clustering COMES under unsupervised machine learning, therefore there is no training needed. PHP-
ML has support for the following clustering algorithms

* k-Means
« dbscan

k-Means

k-Means separates the data into n groups of equal variance. This means that we need to pass in a
number »n which would be the number of clusters we need in our solution. The following code will
help bring more clarity

// Our data set
$samples = [[1, 11, (8, 71, [1, 21, [7, 81, [2, 11, [8, 911;

// Initialize clustering with parameter "n°

Skmeans = new KMeans (3);
Skmeans->cluster ($samples); // return [0=>[[7, 8]], 1=>[[8, 711, 2=>[[1,111]

Note that the output contains 3 arrays because because that was the value of n in kveans
constructor. There can also be an optional second parameter in the constructor which would be
the initialization method. FOr example consider

Skmeans = new KMeans (4, KMeans::INIT_RANDOM) ;

n1T_ranpoM places a completely random centroid while trying to determine the